-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
330 consecutive imputation links (#15)
* add function for cumulative imputation links * added tests for forward and backward cumulative links * adding pre-commit hooks * changes after review
- Loading branch information
Showing
3 changed files
with
143 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
import numpy as np | ||
|
||
|
||
def get_cumulative_links( | ||
dataframe, | ||
forward_or_backward, | ||
strata, | ||
reference, | ||
target, | ||
period, | ||
imputation_link, | ||
time_difference=1, | ||
): | ||
""" | ||
Create cumulative imputation links for multiple consecutive periods | ||
without a return. | ||
Parameters | ||
---------- | ||
dataframe : pandas.DataFrame | ||
forward_or_backward: str | ||
either f or b for forward or backward method | ||
strata : str | ||
column name containing strata information (sic) | ||
reference : str | ||
column name containing business reference id | ||
target : str | ||
column name containing target variable | ||
period : str | ||
column name containing time period | ||
imputation_link : string | ||
column name containing imputation links | ||
time_difference : int | ||
time difference between predictive and target period in months | ||
Returns | ||
------- | ||
pandas.DataFrame | ||
dataframe with imputation_group and | ||
cumulative_forward/backward_imputation_link column | ||
""" | ||
|
||
dataframe.sort_values([strata, reference, period], inplace=True) | ||
dataframe["missing_value"] = np.where(dataframe[target].isnull(), True, False) | ||
|
||
dataframe["imputation_group"] = ( | ||
( | ||
(dataframe["missing_value"].diff(time_difference) != 0) | ||
| (dataframe[strata].diff(time_difference) != 0) | ||
| (dataframe[reference].diff(time_difference) != 0) | ||
) | ||
.astype("int") | ||
.cumsum() | ||
) | ||
|
||
if forward_or_backward == "f": | ||
dataframe["cumulative_" + imputation_link] = dataframe.groupby( | ||
"imputation_group" | ||
)[imputation_link].cumprod() | ||
elif forward_or_backward == "b": | ||
dataframe["cumulative_" + imputation_link] = ( | ||
dataframe[::-1].groupby("imputation_group")[imputation_link].cumprod()[::-1] | ||
) | ||
|
||
dataframe["cumulative_" + imputation_link] = np.where( | ||
~dataframe[target].isnull(), | ||
np.nan, | ||
dataframe["cumulative_" + imputation_link], | ||
) | ||
|
||
return dataframe[["imputation_group", "cumulative_" + imputation_link]] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
strata,reference,target,period,forward_imputation_link,backward_imputation_link,imputation_group,cumulative_forward_imputation_link,cumulative_backward_imputation_link | ||
100,100000,200,202402,1,2,1,, | ||
100,100000,,202403,2,0.6,2,2,0.6 | ||
100,100000,,202404,3,1,2,6,1 | ||
200,100001,,202402,1,4,3,1,2 | ||
200,100001,,202403,3,0.5,3,3,0.5 | ||
200,100001,300,202404,0.5,1,4,, |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
from pathlib import Path | ||
|
||
import pytest | ||
from helper_functions import load_and_format | ||
from pandas.testing import assert_frame_equal | ||
|
||
from src.cumulative_imputation_links import get_cumulative_links | ||
|
||
|
||
@pytest.fixture(scope="class") | ||
def cumulative_links_test_data(): | ||
return load_and_format(Path("tests") / "cumulative_links.csv") | ||
|
||
|
||
class TestComulativeLinks: | ||
def test_get_cumulative_links_forward(self, cumulative_links_test_data): | ||
input_data = cumulative_links_test_data.drop( | ||
columns=["cumulative_forward_imputation_link", "imputation_group"] | ||
) | ||
|
||
expected_output = cumulative_links_test_data[ | ||
[ | ||
"imputation_group", | ||
"cumulative_forward_imputation_link", | ||
] | ||
] | ||
|
||
actual_output = get_cumulative_links( | ||
input_data, | ||
"f", | ||
"strata", | ||
"reference", | ||
"target", | ||
"period", | ||
"forward_imputation_link", | ||
1, | ||
) | ||
|
||
assert_frame_equal(actual_output, expected_output) | ||
|
||
def test_get_cumulative_links_backward(self, cumulative_links_test_data): | ||
input_data = cumulative_links_test_data.drop( | ||
columns=["cumulative_backward_imputation_link", "imputation_group"] | ||
) | ||
|
||
expected_output = cumulative_links_test_data[ | ||
[ | ||
"imputation_group", | ||
"cumulative_backward_imputation_link", | ||
] | ||
] | ||
|
||
actual_output = get_cumulative_links( | ||
input_data, | ||
"b", | ||
"strata", | ||
"reference", | ||
"target", | ||
"period", | ||
"backward_imputation_link", | ||
1, | ||
) | ||
|
||
assert_frame_equal(actual_output, expected_output) |