Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

NotApplicable fix for measureConditionEraCompleteness #527

Merged
merged 9 commits into from
Jul 12, 2024
191 changes: 191 additions & 0 deletions R/calculateNotApplicableStatus.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
# Copyright 2023 Observational Health Data Sciences and Informatics
#
# This file is part of DataQualityDashboard
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#' Determines if all checks are present expected to calculate the 'Not Applicable' status
#'
#' @param checkResults A dataframe containing the results of the data quality checks
#'
#' @keywords internal
.hasNAchecks <- function(checkResults) {
checkNames <- unique(checkResults$checkName)
return(.containsNAchecks(checkNames))
}

#' Determines if all checks required for 'Not Applicable' status are in the checkNames
#'
#' @param checkNames A character vector of check names
#'
#' @keywords internal
.containsNAchecks <- function(checkNames) {
naCheckNames <- c("cdmTable", "cdmField", "measureValueCompleteness")
missingNAChecks <- !(naCheckNames %in% checkNames)
if (any(missingNAChecks)) {
return(FALSE)
}
return(TRUE)
}

#' Applies the 'Not Applicable' status to a single check
#'
#' @param x Results from a single check
#'
#' @keywords internal
.applyNotApplicable <- function(x) {
# Errors precede all other statuses
if (x$isError == 1) {
return(0)
}

# No NA status for cdmTable and cdmField if missing
if (x$checkName == "cdmTable" || x$checkName == "cdmField") {
return(0)
}

if (any(x$tableIsMissing, x$fieldIsMissing, x$tableIsEmpty, na.rm = TRUE)) {
return(1)
}

# No NA status for measureValueCompleteness if empty
if (x$checkName == "measureValueCompleteness") {
return(0)
}

if (any(x$fieldIsEmpty, x$conceptIsMissing, x$conceptAndUnitAreMissing, na.rm = TRUE)) {
return(1)
}

return(0)
}

#' Determines if check should be notApplicable and the notApplicableReason
#'
#' @param checkResults A dataframe containing the results of the data quality checks
#'
#' @keywords internal
.calculateNotApplicableStatus <- function(checkResults) {
# Look up missing tables and add variable tableIsMissing to checkResults
missingTables <- checkResults %>%
dplyr::filter(
.data$checkName == "cdmTable"
) %>%
dplyr::mutate(
.data$cdmTableName,
tableIsMissing = .data$failed == 1,
.keep = "none"
)

# Look up missing fields and add variable fieldIsMissing to checkResults
missingFields <- checkResults %>%
dplyr::filter(
.data$checkName == "cdmField"
) %>%
dplyr::mutate(
.data$cdmTableName,
.data$cdmFieldName,
fieldIsMissing = .data$failed == 1,
.keep = "none"
)

# Look up empty tables and add variable tableIsEmpty to checkResults
emptyTables <- checkResults %>%
dplyr::filter(
.data$checkName == "measureValueCompleteness"
) %>%
dplyr::mutate(
.data$cdmTableName,
tableIsEmpty = .data$numDenominatorRows == 0,
.keep = "none"
) %>%
dplyr::distinct()

# Look up empty fields and add variable fieldIsEmpty to checkResults
emptyFields <- checkResults %>%
dplyr::filter(
.data$checkName == "measureValueCompleteness"
) %>%
dplyr::mutate(
.data$cdmTableName,
.data$cdmFieldName,
fieldIsEmpty = .data$numDenominatorRows == .data$numViolatedRows,
.keep = "none"
)

# Assign notApplicable status
checkResults <- checkResults %>%
dplyr::left_join(
missingTables,
by = "cdmTableName"
) %>%
dplyr::left_join(
missingFields,
by = c("cdmTableName", "cdmFieldName")
) %>%
dplyr::left_join(
emptyTables,
by = "cdmTableName"
) %>%
dplyr::left_join(
emptyFields,
by = c("cdmTableName", "cdmFieldName")
) %>%
dplyr::mutate(
conceptIsMissing = .data$checkLevel == "CONCEPT" & is.na(.data$unitConceptId) & .data$numDenominatorRows == 0,
conceptAndUnitAreMissing = .data$checkLevel == "CONCEPT" & !is.na(.data$unitConceptId) & .data$numDenominatorRows == 0,
fieldIsMissing = dplyr::coalesce(.data$fieldIsMissing, !is.na(.data$cdmFieldName)),
fieldIsEmpty = dplyr::coalesce(.data$fieldIsEmpty, !is.na(.data$cdmFieldName)),
)

checkResults$notApplicable <- NA
checkResults$notApplicableReason <- NA

conditionOccurrenceIsMissing <- missingTables %>% dplyr::filter(.data$cdmTableName == "CONDITION_OCCURRENCE") %>% dplyr::pull(tableIsMissing)
conditionOccurrenceIsEmpty <- emptyTables %>% dplyr::filter(.data$cdmTableName == "CONDITION_OCCURRENCE") %>% dplyr::pull(tableIsEmpty)
for (i in seq_len(nrow(checkResults))) {
# Special rule for measureConditionEraCompleteness, which should be notApplicable if CONDITION_OCCURRENCE is empty
if (checkResults[i, "checkName"] == "measureConditionEraCompleteness") {
if (conditionOccurrenceIsMissing || conditionOccurrenceIsEmpty) {
checkResults$notApplicable[i] <- 1
checkResults$notApplicableReason[i] <- "Table CONDITION_OCCURRENCE is empty."
} else {
checkResults$notApplicable[i] <- 0
}
} else {
checkResults$notApplicable[i] <- .applyNotApplicable(checkResults[i, ])
}
}

checkResults <- checkResults %>%
dplyr::mutate(
notApplicableReason = ifelse(
.data$notApplicable == 1,
dplyr::case_when(
!is.na(.data$notApplicableReason) ~ .data$notApplicableReason,
.data$tableIsMissing ~ sprintf("Table %s does not exist.", .data$cdmTableName),
.data$fieldIsMissing ~ sprintf("Field %s.%s does not exist.", .data$cdmTableName, .data$cdmFieldName),
.data$tableIsEmpty ~ sprintf("Table %s is empty.", .data$cdmTableName),
.data$fieldIsEmpty ~ sprintf("Field %s.%s is not populated.", .data$cdmTableName, .data$cdmFieldName),
.data$conceptIsMissing ~ sprintf("%s=%s is missing from the %s table.", .data$cdmFieldName, .data$conceptId, .data$cdmTableName),
.data$conceptAndUnitAreMissing ~ sprintf("Combination of %s=%s, unitConceptId=%s and VALUE_AS_NUMBER IS NOT NULL is missing from the %s table.", .data$cdmFieldName, .data$conceptId, .data$unitConceptId, .data$cdmTableName) #nolint
),
NA
),
failed = ifelse(.data$notApplicable == 1, 0, .data$failed),
passed = ifelse(.data$failed == 0 & .data$isError == 0 & .data$notApplicable == 0, 1, 0)
) %>%
dplyr::select(-c("tableIsMissing", "fieldIsMissing", "tableIsEmpty", "fieldIsEmpty", "conceptIsMissing", "conceptAndUnitAreMissing"))

return(checkResults)
}
114 changes: 2 additions & 112 deletions R/evaluateThresholds.R
Original file line number Diff line number Diff line change
Expand Up @@ -163,119 +163,9 @@
}
}

missingTables <- dplyr::select(
dplyr::filter(checkResults, .data$checkName == "cdmTable" & .data$failed == 1),
"cdmTableName"
)
if (nrow(missingTables) > 0) {
missingTables$tableIsMissing <- 1
checkResults <- dplyr::mutate(
dplyr::left_join(checkResults, missingTables, by = "cdmTableName"),
tableIsMissing = ifelse(.data$checkName != "cdmTable" & .data$isError == 0, .data$tableIsMissing, NA)
)
} else {
checkResults$tableIsMissing <- NA
if (.hasNAchecks(checkResults)) {
checkResults <- .calculateNotApplicableStatus(checkResults)
}

missingFields <- dplyr::select(
dplyr::filter(checkResults, .data$checkName == "cdmField" & .data$failed == 1 & is.na(.data$tableIsMissing)),
"cdmTableName", "cdmFieldName"
)
if (nrow(missingFields) > 0) {
missingFields$fieldIsMissing <- 1
checkResults <- dplyr::mutate(
dplyr::left_join(checkResults, missingFields, by = c("cdmTableName", "cdmFieldName")),
fieldIsMissing = ifelse(.data$checkName != "cdmField" & .data$isError == 0, .data$fieldIsMissing, NA)
)
} else {
checkResults$fieldIsMissing <- NA
}

emptyTables <- dplyr::distinct(
dplyr::select(
dplyr::filter(checkResults, .data$checkName == "measureValueCompleteness" &
.data$numDenominatorRows == 0 &
.data$isError == 0 &
is.na(.data$tableIsMissing) &
is.na(.data$fieldIsMissing)),
"cdmTableName"
)
)
if (nrow(emptyTables) > 0) {
emptyTables$tableIsEmpty <- 1
checkResults <- dplyr::mutate(
dplyr::left_join(checkResults, emptyTables, by = c("cdmTableName")),
tableIsEmpty = ifelse(.data$checkName != "cdmField" & .data$checkName != "cdmTable" & .data$isError == 0, .data$tableIsEmpty, NA)
)
} else {
checkResults$tableIsEmpty <- NA
}

emptyFields <-
dplyr::select(
dplyr::filter(checkResults, .data$checkName == "measureValueCompleteness" &
.data$numDenominatorRows == .data$numViolatedRows &
is.na(.data$tableIsMissing) & is.na(.data$fieldIsMissing) & is.na(.data$tableIsEmpty)),
"cdmTableName", "cdmFieldName"
)
if (nrow(emptyFields) > 0) {
emptyFields$fieldIsEmpty <- 1
checkResults <- dplyr::mutate(
dplyr::left_join(checkResults, emptyFields, by = c("cdmTableName", "cdmFieldName")),
fieldIsEmpty = ifelse(.data$checkName != "measureValueCompleteness" & .data$checkName != "cdmField" & .data$checkName != "isRequired" & .data$isError == 0, .data$fieldIsEmpty, NA)
)
} else {
checkResults$fieldIsEmpty <- NA
}

checkResults <- dplyr::mutate(
checkResults,
conceptIsMissing = ifelse(
.data$isError == 0 &
is.na(.data$tableIsMissing) &
is.na(.data$fieldIsMissing) &
is.na(.data$tableIsEmpty) &
is.na(.data$fieldIsEmpty) &
.data$checkLevel == "CONCEPT" &
is.na(.data$unitConceptId) &
.data$numDenominatorRows == 0,
1,
NA
)
)

checkResults <- dplyr::mutate(
checkResults,
conceptAndUnitAreMissing = ifelse(
.data$isError == 0 &
is.na(.data$tableIsMissing) &
is.na(.data$fieldIsMissing) &
is.na(.data$tableIsEmpty) &
is.na(.data$fieldIsEmpty) &
.data$checkLevel == "CONCEPT" &
!is.na(.data$unitConceptId) &
.data$numDenominatorRows == 0,
1,
NA
)
)

checkResults <- dplyr::mutate(
checkResults,
notApplicable = dplyr::coalesce(.data$tableIsMissing, .data$fieldIsMissing, .data$tableIsEmpty, .data$fieldIsEmpty, .data$conceptIsMissing, .data$conceptAndUnitAreMissing, 0),
notApplicableReason = dplyr::case_when(
!is.na(.data$tableIsMissing) ~ sprintf("Table %s does not exist.", .data$cdmTableName),
!is.na(.data$fieldIsMissing) ~ sprintf("Field %s.%s does not exist.", .data$cdmTableName, .data$cdmFieldName),
!is.na(.data$tableIsEmpty) ~ sprintf("Table %s is empty.", .data$cdmTableName),
!is.na(.data$fieldIsEmpty) ~ sprintf("Field %s.%s is not populated.", .data$cdmTableName, .data$cdmFieldName),
!is.na(.data$conceptIsMissing) ~ sprintf("%s=%s is missing from the %s table.", .data$cdmFieldName, .data$conceptId, .data$cdmTableName),
!is.na(.data$conceptAndUnitAreMissing) ~ sprintf("Combination of %s=%s, unitConceptId=%s and VALUE_AS_NUMBER IS NOT NULL is missing from the %s table.", .data$cdmFieldName, .data$conceptId, .data$unitConceptId, .data$cdmTableName)
)
)

checkResults <- dplyr::select(checkResults, -c("tableIsMissing", "fieldIsMissing", "tableIsEmpty", "fieldIsEmpty", "conceptIsMissing", "conceptAndUnitAreMissing"))
checkResults <- dplyr::mutate(checkResults, failed = ifelse(.data$notApplicable == 1, 0, .data$failed))
checkResults <- dplyr::mutate(checkResults, passed = ifelse(.data$failed == 0 & .data$isError == 0 & .data$notApplicable == 0, 1, 0))

checkResults
}
10 changes: 2 additions & 8 deletions R/executeDqChecks.R
Original file line number Diff line number Diff line change
Expand Up @@ -114,16 +114,10 @@ executeDqChecks <- function(connectionDetails,
stopifnot(is.character(cdmVersion))

# Warning if check names for determining NA is missing
if (!length(checkNames) == 0) {
naCheckNames <- c("cdmTable", "cdmField", "measureValueCompleteness")
missingNAChecks <- !(naCheckNames %in% checkNames)
if (any(missingNAChecks)) {
missingNACheckNames <- paste(naCheckNames[missingNAChecks], collapse = ", ")
warning(sprintf("Missing check names to calculate the 'Not Applicable' status: %s", missingNACheckNames))
}
if (length(checkNames) > 0 && !.containsNAchecks(checkNames)) {
warning("Missing check names to calculate the 'Not Applicable' status.")
}


# temporary patch to work around vroom 1.6.4 bug
readr::local_edition(1)

Expand Down
3 changes: 3 additions & 0 deletions tests/testthat/setup.R
Original file line number Diff line number Diff line change
Expand Up @@ -12,3 +12,6 @@ if (Sys.getenv("DONT_DOWNLOAD_JDBC_DRIVERS", "") == "TRUE") {
connectionDetailsEunomia <- Eunomia::getEunomiaConnectionDetails()
cdmDatabaseSchemaEunomia <- "main"
resultsDatabaseSchemaEunomia <- "main"

# Separate connection details for NA tests, as this requires removing records
connectionDetailsEunomiaNaChecks <- Eunomia::getEunomiaConnectionDetails()
Loading
Loading