Skip to content

Wagner_Park_Gerstoft_21_T-SP: A package of MATLAB codes for Gridless DOA estimation for Non-uniform linear arrays

License

Notifications You must be signed in to change notification settings

NoiseLabUCSD/AlternatingProjections

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Gridless DOA estimation and Root-MUSIC for Non-Uniform Linear Arrays

A set of MATLAB codes for direction-of-arrival (DOA) estimation, beamforming.

Features

The codes provide:

-Uniform linear array (ULA) - Signal-to-noise ratio (SNR) performance (root mean square error vs SNR) [a0_ULA_SNR.m]

-ULA - Snapshot performance [a0_ULA_Snapshot.m]

-Non-Uniform linear array (NUA) - SNR performance [a1_NUA_SNR.m]

-NUA - Snapshot performance [a1_NUA_Snapshot.m]

Citation

-M. Wagner, Y. Park, and P. Gerstoft, “Gridless DOA estimation and root-MUSIC for non-uniform linear arrays,” IEEE Trans. Signal Process. 69, 2144–2157 (2021).
-Y. Park and P. Gerstoft, “Gridless sparse covariance-based beamforming via alternating projections including co-prime arrays,” J. Acoust. Soc. Am. 151(6), 3828-3837 (2022).

-M. Wagner, P. Gerstoft, and Y. Park, “Gridless DOA estimation via alternating projections,” in Proc. IEEE ICASSP (2019), pp. 4215–4219.
-Y. Park and P. Gerstoft, “Alternating projections gridless covariance-based estimation for DOA,” in Proc. IEEE ICASSP (2021), pp. 4385–4389.

[pdf]

Updates

Version 1.0: (05/09/2022 by Y. Park)
System framework as defined in Noiselab DOA estimation.

Version 2.0: (06/08/2022 by Y. Park) AP Covariance [JASA 2022]

Contact

Mark Wagner, Yongsung Park, & Peter Gerstoft
MPL/SIO/UCSD
[email protected]
[email protected]
[email protected]

About

Wagner_Park_Gerstoft_21_T-SP: A package of MATLAB codes for Gridless DOA estimation for Non-uniform linear arrays

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 100.0%