Namgyu Kang · Jaemin Oh · Youngjoon Hong · Eunbyung Park
Allen_Cahn_Gaussians.mp4
Klein_Gordon_Gaussians.mp4
Helmholtz_Gaussians.mp4
git clone https://github.com/NamGyuKang/Physics-Informed-Gaussians.git
cd Physics-Informed-Gaussians
Please follow the steps in the Jax_gpu_version_installation.txt file to install JAX GPU version.
The code is tested with Python (3.8, 3.9) and PyTorch (1.11, 11.2) with CUDA (>=11.3). You can create an anaconda environment with those requirements by running:
- if you use CUDA 11.3, Pytorch 1.11, Python 3.9,
conda env create -f CUDA_11_3_Pytorch_1_11_Py_3_9.yml
- or with CUDA 11.6, Pytorch 1.12, Python 3.8,
conda env create -f CUDA_11_6_Pytorch_1_12_Py_3_8.yml
- and then
conda activate pig
CUDA_VISIBLE_DEVICES=0 bash flow_mixing3d_pig.sh
CUDA_VISIBLE_DEVICES=0 bash helmholtz2d_pig.sh
CUDA_VISIBLE_DEVICES=0 bash klein_gordon3d_pig.sh
CUDA_VISIBLE_DEVICES=0 bash diffusion3d_pig.sh
If you find this code useful in your research, please consider citing us!
@article{kang2024pig,
title={PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations},
author={Kang, Namgyu and Oh, Jaemin and Hong, Youngjoon and Park, Eunbyung},
journal={arXiv preprint arXiv:2412.05994},
year={2024}
}
Contact Namgyu Kang if you have any further questions.
This project is built on top of several outstanding repositories: SPINN, PIXEL, JAXPI. We thank the original authors for opensourcing their excellent work.