-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #127 from jukent/snake_case
Consistent function naming convention
- Loading branch information
Showing
5 changed files
with
422 additions
and
60 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Import Packages:\n", | ||
"\n", | ||
"import numpy as np\n", | ||
"import xarray as xr\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from matplotlib.ticker import ScalarFormatter\n", | ||
"import cmaps\n", | ||
"import metpy.calc as mpcalc\n", | ||
"from metpy.units import units\n", | ||
"\n", | ||
"import scipy\n", | ||
"\n", | ||
"#import geocat.datafiles as gdf\n", | ||
"import geocat.viz as gv" | ||
] | ||
}, | ||
{ | ||
"cell_type": "raw", | ||
"metadata": {}, | ||
"source": [ | ||
"# Open a netCDF data file using xarray default engine and load the data into xarrays\n", | ||
"ds = xr.open_dataset(gdf.get(\"netcdf_files/mxclim.nc\"))\n", | ||
"\n", | ||
"# Extract variables\n", | ||
"U = ds.U[0, :, :]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAKTCAYAAAD16aXPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAm0ElEQVR4nO3de3CV9Z348c+BYEAEagQxkoBAFQ3eA1FxLegqjF21yjLq2kHb6mxxqYWl9YqrLeOOl13RaqNr6w1n1MUbbsfBC2UNYu0satGq0alyTVREYOQSQQSe3x/9kl+5Kbmf4Os1k5me5zznfD/0O9i3T895ksuyLAsAACA6tPUAAACQL8QxAAAk4hgAABJxDAAAiTgGAIBEHAMAQCKOAQAgKWjrARpq06ZNMX/+/Ojdu3d06KDtAQDyzZYtW+KTTz6JY445JgoK2ldutq9pI2L+/PlRUVHR1mMAAPA15s2bF0OHDm3rMRqk3cVx7969I+Kv/2UXFxe38TQAAGzv448/joqKivpua0/aXRxv/ShFcXFxlJSUtPE0AADsSnv8CGz7mxgAAFqIOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACBpkzg+55xzYt99940xY8a0xfIAALBTbRLHP/3pT+Ohhx5qi6UBAGCX2iSOTz755OjWrVtbLA0AALvU4Dh+6aWX4swzz4wDDzwwcrlcPP300zucc9ddd0X//v2jc+fOUV5eHnPnzm2OWQEAoEU1OI7r6uriqKOOil//+tc7fX769OkxceLEmDx5csyfPz9OOumkOP3002Pp0qWNGvCLL76INWvW1P+sXbu2Ue8DAABfp8FxfPrpp8cNN9wQo0eP3unzU6dOjYsvvjguueSSOOyww+L222+P0tLSuPvuuxs14I033hg9evSo/ykrK2vU+wAAwNdp1s8cb9y4MV5//fUYOXLkNsdHjhwZr7zySqPe8+qrr47Vq1fX/1RXVzfHqAAAsIOC5nyzFStWxObNm6N3797bHO/du3csW7as/vGoUaPiT3/6U9TV1UVJSUnMmDEjhg4dutP3LCwsjMLCwvrHa9asac6RAQCgXrPG8Va5XG6bx1mWbXPs+eefb4llAQCgSZr1YxU9e/aMjh07bnOVOCJi+fLlO1xNBgCAfNOscbzXXntFeXl5zJo1a5vjs2bNimHDhjXnUgAA0Owa/LGKdevWxQcffFD/eNGiRfHGG29EUVFR9O3bNyZNmhRjx46NIUOGxAknnBC/+c1vYunSpTFu3LhmHRwAAJpbg+P4tddei5NPPrn+8aRJkyIi4qKLLooHH3wwzjvvvFi5cmVMmTIlPv744zj88MNj5syZ0a9fv+abGgAAWkAuy7KsrYdoiNra2igtLY2ampooKSlp63EAANhOe+61Zv3MMQAAtGfiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTtJo4rKyujrKwsRowY0dajAACwh2o3cTx+/Piorq6Oqqqqth4FAIA9VLuJYwAAaGniGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAABJu4njysrKKCsrixEjRrT1KAAA7KHaTRyPHz8+qquro6qqqq1HAQBgD9Vu4hgAAFqaOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABI2k0cV1ZWRllZWYwYMaKtRwEAYA/VbuJ4/PjxUV1dHVVVVW09CgAAe6h2E8cAANDSxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAABJu4njysrKKCsrixEjRrT1KAAA7KHaTRyPHz8+qquro6qqqq1HAQBgD9Vu4hgAAFqaOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgKTdxHFlZWWUlZXFiBEj2noUAAD2UO0mjsePHx/V1dVRVVXV1qMAALCHajdxDAAALU0cAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACQFbT0AAAB8neXLl8eSJUvi008/jfXr10fPnj2jV69eMWjQoOjYsWOzrSOOAQDIS7NmzYrp06fHSy+9FAsWLNjpOXvvvXccf/zxMWrUqBg7dmz07t27SWvmsizLmvQOray2tjZKS0ujpqYmSkpK2nocAAC205Re27BhQ9x5551x9913x5IlS2Jrqnbp0iX233//KCoqii5dusSqVati1apVsXz58oiIyOVyUVBQEGeccUZcc801UV5e3qjZXTkGACAv3H///XH99dfHhx9+GIWFhXHWWWfFGWecERUVFTF48ODo0GHHr8utWrUq5s2bFy+//HI89thjMWPGjHj66afj3HPPjZtuuin69evXoBlcOQYAoFk1ttc6dOgQAwYMiCuuuCLOP//86N69e4PXfv311+OOO+6IRx99NK699tq47rrrGvR6V44BAMgL06ZNiwsuuKBJX7ArLy+PadOmxS9+8Yuora1t8OvbTRxXVlZGZWVlbNy4sa1HAQCgBYwdO7bZ3qt///7Rv3//Br+u3dznePz48VFdXR1VVVVtPQoAAHuodhPHAADQ0trNxyoAAPjmev755+O5556LhQsXxrp162JX95TI5XIxe/bsRq8jjgEAyFtr1qyJs88+O+bMmbPLIP5buVyuSeuJYwAA8taVV14ZVVVVUVRUFP/8z/8cxxxzTPTq1avJEbwr4hgAgLz11FNPRadOnWLOnDkxePDgFl/PF/IAAMhbdXV1MWjQoFYJ4whxDABAHjv00ENj/fr1rbaeOAYAIG+NHz8+FixY0Gq/60IcAwCQt374wx/GZZddFqNHj44777wz1q1b16Lr+UIeAAB57ZZbbomampqYOHFiTJw4MXr16hV77733Ts/N5XKxYMGCRq8ljgEAyFuffPJJnHrqqVFdXV1/n+Ply5fv8nz3OQYAYI915ZVXxjvvvBPf/va34/LLL4+jjz7afY4BAPhmeu6556Jz585RVVUVBx54YIuv5wt5AADkrbq6ujj00ENbJYwjxDEAAHnsiCOOiJUrV7baeuIYAIC8dfnll0dNTU089thjrbKeOAYAIG+dc845cccdd8Qll1wSP/vZz+Kdd96JDRs2tNh6vpAHAEDe6tixY/1/vv322+P222//yvNzuVxs2rSp0euJYwAA8tbWexu31PnbE8cAAOStLVu2tOp6PnMMAACJOAYAIG+9+eabDTr/rrvuatJ64hgAgLw1atSoeP/993fr3Ntuuy0uu+yyJq0njgEAyFvLly+P0047LWpqar7yvJtuuil+9rOfRdeuXZu0njgGACBv3XLLLbF06dI49dRTY/ny5Ts95xe/+EVcc8010a1bt3j22WebtJ44BgAgb/385z+Pa6+9Nt5///0YOXJkfPbZZ9s8f/XVV8eUKVOiR48eMWvWrDjxxBObtJ44BgAgr02ZMiUuu+yy+POf/xynn3561NXVRUTEpEmT4uabb46ioqKYPXt2VFRUNHkt9zkGACDv/epXv4o1a9bEtGnT4swzz4xBgwbFPffcE7169Yrf//73ccQRRzTLOuIYAIB24b777ou1a9fGU089FXPmzIkDDjggZs+eHYcddlizrSGOAQDIC0uXLv3ac2688cZYvHhxLFiwIB566KHo2rXrDq/r27dvo2cQxwAA5IWDDjoocrncbp8/atSoHY7lcrnYtGlTo2cQxwAA5IW+ffs2KI5bgjgGACAvLF68uK1HcCs3AADYShwDAEAijgEAyAu1tbXN+n4fffRRg18jjgEAyAsDBw6MSy+9NJYsWdLo99iyZUs88sgjMXjw4Lj33nsb/HpxDABAXvje974X99xzTwwcODD+/u//Pu69997duvr75ZdfxiuvvBITJkyIPn36xNixY2P16tVx0kknNXgGd6sAACAvPPbYY/Hqq6/GVVddFS+++GJUVVVFRERxcXGUl5dHcXFxFBUVRWFhYXz22WexatWqePfdd+Ott96KjRs3RpZlse+++8YNN9wQEydOjC5dujR4BnEMAEDeGDp0aMyePTvee++9uOeee+Lxxx+Pjz76qP4K8tb7IGdZVv+aTp06xfDhw+Piiy+OMWPGRGFhYaPXz2V/+87tQG1tbZSWlkZNTU2UlJS09TgAAGynuXttwYIF8corr8SSJUtixYoVsWHDhigqKor9998/jj766DjuuOMadZV4Z1w5BgAgrw0cODAGDhzYKmv5Qh4AACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAAHlrwIABcf755+/Wuf/0T//U5F8WIo4BAMhbixcvjo8++mi3zl22bFksXry4SeuJYwAA9ggbNmyIgoKCJr2HOAYAoN1bsWJFVFdXR+/evZv0Pk1LawAAaEbTpk2LadOmbXPsrbfeilNOOWWXr1m/fn1UV1fHunXrYsyYMU1aXxwDAJA3Fi9eHFVVVfWPc7lcrF69eptju3LKKafETTfd1KT1xTEAAHnjBz/4QYwYMSIiIrIsi1NOOSWOOOKIuOOOO3Z6fi6Xiy5dukT//v2jZ8+eTV5fHAMAkDf69esX/fr1q3/8ne98J4466qgYPnx4q6wvjgEAyFu783GK5uRuFQAAkLhyDABA3nvhhRfi2WefjYULF8a6desiy7KdnpfL5WL27NmNXkccAwCQtz7//PMYPXp0zJo1KyJil1G8VS6Xa9J64hgAgLz1b//2b/HCCy9E9+7d45JLLomhQ4fG/vvvHx06tMyng8UxAAB56/HHH4+OHTvGCy+8EBUVFS2+ni/kAQCQtz799NM4+OCDWyWMI8QxAAB5rKSkJAoKWu/DDuIYAIC89f3vfz+qq6tjwYIFrbKeOAYAIG9dc8018Xd/93dx9tlnx/z581t8vXbzhbzKysqorKyMjRs3tvUoAAC0gB/96Ec7PV5aWhp//OMfY+jQoXH00UfHwIEDo2vXrjs9N5fLxX333dfoGXLZ190sLs/U1tZGaWlp1NTURElJSVuPAwDAdhrba81xe7ZcLhebN29u9OvbzZVjAAD2bA888EBbjyCOAQDIDxdddFFbj+ALeQAAsJU4BgCAxMcqAADIW7u6g8XOdOzYMbp16xYHHXRQnHjiiVFeXt7g9cQxAAB568EHH4yIv96FIiJiZzda2/65rY/Ly8tj2rRpcdhhh+32euIYAIC89cADD8SCBQvi5ptvjq5du8bZZ58dRx55ZHTr1i3Wrl0bb731Vjz99NNRV1cXV1xxRRxwwAHx7rvvxpNPPhmvvfZanHzyyTF//vwoLi7erfXc5xgAgGbVnL22aNGiGDJkSFRUVMSjjz4a3/rWt3Y4Z82aNXHeeefFq6++GvPmzYsBAwZEXV1djB49On7/+9/HhAkTYurUqbu1ni/kAQCQt6699trYsGHDLsM4IqJ79+7xyCOPxPr16+Paa6+NiIiuXbvG/fffH7lcLmbOnLnb64ljAADy1uzZs2Pw4MG7DOOt9t133xg8eHD87//+b/2xPn36xKGHHho1NTW7vZ44BgAgb61ZsyZWrVq1W+euWrUq1qxZs82xwsLC+i/o7Q5xDABA3jr44INj0aJF8cwzz3zlec8880wsXLgwDjnkkG2OL1y4MHr16rXb64ljAADy1qWXXhpZlsW5554bN910Uyxbtmyb5z/55JO4+eab4/zzz49cLheXXnpp/XNvvvlmrF69Oo499tjdXs+t3AAAyFvjxo2LV199NR544IGYPHlyTJ48Ofbbb7/o1q1brFu3LlasWBERf73H8cUXXxw//vGP619bVVUVw4cPjwsvvHC313MrNwAAmlVL9NoTTzwRt956a8ybN2+bXwTSoUOHOO6442LSpEnxj//4j01ex5VjAADy3pgxY2LMmDGxbt26+OCDD6Kuri66du0a3/72t2OfffZptnXEMQAA7cY+++wTRx99dIu9vy/kAQBA4soxAAB54aGHHoqIiB49esT3vve9bY41REO+gLc9X8gDAKBZNbbXOnToELlcLgYNGhTV1dXbHGuIzZs3N+j8v+XKMQAAeeHCCy+MXC4XxcXFOxxrLeIYAIC88OCDD+7WsZbkC3kAAJCIYwAA2o0tW7bEp59+GkuXLm2R9xfHAADkvZkzZ8Zpp50W3bp1iwMOOCAGDBiwzfP//u//HhdccEF8+umnTVpHHAMAkNeuuOKKOPPMM2P27NmxefPm6NSpU2x/w7Xi4uKYPn16zJgxo0lriWMAAPLWk08+Gf/5n/8ZBx54YDzzzDNRV1cXQ4cO3eG8c845JyIifve73zVpPXerAAAgb1VWVkYul4vHH388jj/++F2et++++0b//v3j/fffb9J6rhwDAJC35s+fH6WlpV8Zxlv16tUrPvzwwyatJ44BAMhbX3zxRXzrW9/arXM///zz6NixY5PWE8cAAOSt0tLS+OCDD+LLL7/8yvNWr14d7733XgwcOLBJ64ljAADy1qhRo2L9+vVx2223feV5U6ZMiU2bNsUZZ5zRpPXEMQAAeevKK6+Mbt26xTXXXBOXX355vPfee/XPbdmyJf785z/Hj370o7jtttuiZ8+eMWHChCat524VAADkrT59+sT//M//xOjRo2Pq1KkxderU+uc6deoUERFZlkVRUVHMmDEj9ttvvyat58oxAAB5bfjw4fH222/HxIkTo1+/fpFlWf1PcXFx/OQnP4k333wzhg0b1uS1ctn2v14kz9XW1kZpaWnU1NRESUlJW48DAMB2WrrX6urqYvXq1bHPPvtE9+7dm/W9fawCAIB2pWvXrtG1a9cWeW8fqwAAgMSVYwAA8saUKVOa/B7XXXddo1/rM8cAADSrpvRahw4dIpfLNWn9zZs3N/q1rhwDAJA3vvOd7+wyjufMmRPdu3ePY445psXWF8cAAOSNqqqqXT7XoUOHOPLII+PFF19ssfV9IQ8AABJxDAAAiTgGAIBEHAMAQCKOAQAgEccAAJC4lRsAAHnjoYce+srnly9f/rXnXHjhhY1e32/IAwCgWbXlb8jL5XKxadOmRr/elWMAAPJG3759m/zro5tCHAMAkDcWL17cpuv7Qh4AACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBA0m7iuLKyMsrKymLEiBFtPQoAAHuodhPH48ePj+rq6qiqqmrrUQAA2EO1mzgGAICWJo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBA0iZx/Mwzz8SgQYPi4IMPjnvvvbctRgAAgB0UtPaCmzZtikmTJsWLL74Y3bt3j2OPPTZGjx4dRUVFrT0KAABso9WvHM+bNy8GDx4cffr0iW7dusV3v/vdeP7551t7DAAA2EGD4/ill16KM888Mw488MDI5XLx9NNP73DOXXfdFf3794/OnTtHeXl5zJ07t/65jz76KPr06VP/uKSkJD788MPGTQ8AAM2owXFcV1cXRx11VPz617/e6fPTp0+PiRMnxuTJk2P+/Plx0kknxemnnx5Lly6NiIgsy3Z4TS6X2+V6X3zxRaxZs6b+Z+3atQ0dGQAAdkuD4/j000+PG264IUaPHr3T56dOnRoXX3xxXHLJJXHYYYfF7bffHqWlpXH33XdHRESfPn22uVJcW1sbxcXFu1zvxhtvjB49etT/lJWVNXRkAADYLc36meONGzfG66+/HiNHjtzm+MiRI+OVV16JiIiKiop4++2348MPP4y1a9fGzJkzY9SoUbt8z6uvvjpWr15d/1NdXd2cIwMAQL1mvVvFihUrYvPmzdG7d+9tjvfu3TuWLVv21wULCuLWW2+Nk08+ObZs2RJXXHFF7Lfffrt8z8LCwigsLKx/vGbNmuYcGQAA6rXIrdy2/wxxlmXbHDvrrLPirLPOaomlAQCg0Zr1YxU9e/aMjh071l8l3mr58uU7XE0GAIB806xxvNdee0V5eXnMmjVrm+OzZs2KYcOGNedSAADQ7Br8sYp169bFBx98UP940aJF8cYbb0RRUVH07ds3Jk2aFGPHjo0hQ4bECSecEL/5zW9i6dKlMW7cuGYdHAAAmluD4/i1116Lk08+uf7xpEmTIiLioosuigcffDDOO++8WLlyZUyZMiU+/vjjOPzww2PmzJnRr1+/5psaAABaQC7b2W/lyGO1tbVRWloaNTU1UVJS0tbjAACwnfbca836mWMAAGjPxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABIxDEAACTiGAAAEnEMAACJOAYAgEQcAwBAIo4BACARxwAAkIhjAABI2k0cV1ZWRllZWYwYMaKtRwEAYA+Vy7Isa+shGmLp0qXRr1+/mDdvXhQXF7f1OAAAbOfjjz+OioqKWLJkSfTt27etx2mQgrYeoKFqamoiIqKioqKNJwEA4KvU1NS0uzhud1eOV61aFfvtt1+8/fbb0aNHj7Yehxa2du3aKCsri+rq6ujWrVtbj0MLs9/fLPb7m8V+f7OsXr06Dj/88Fi5cmUUFRW19TgN0u6uHBcU/HXk0tLS6N69extPQ0tbs2ZNRET06dPHfn8D2O9vFvv9zWK/v1m27vHWbmtP2s0X8gAAoKWJYwAASNpdHBcWFsb1118fhYWFbT0KrcB+f7PY728W+/3NYr+/Wdrzfre7L+QBAEBLaXdXjgEAoKWIYwAASMQxAAAk4hgAABJxDAAASV7G8V133RX9+/ePzp07R3l5ecydO/crz58zZ06Ul5dH586dY8CAAfFf//VfrTQpzaEh+/3UU0/FaaedFr169Yru3bvHCSecEM8//3wrTktTNfTv91Z/+MMfoqCgII4++uiWHZBm1dD9/uKLL2Ly5MnRr1+/KCwsjIEDB8b999/fStPSVA3d74cffjiOOuqo2HvvvaO4uDh++MMfxsqVK1tpWpripZdeijPPPDMOPPDAyOVy8fTTT3/ta9pNr2V55r//+7+zTp06Zb/97W+z6urqbMKECVnXrl2zJUuW7PT8hQsXZnvvvXc2YcKErLq6Ovvtb3+bderUKXviiSdaeXIao6H7PWHChOzmm2/O5s2bl/3lL3/Jrr766qxTp07Zn/70p1aenMZo6H5v9dlnn2UDBgzIRo4cmR111FGtMyxN1pj9Puuss7LjjjsumzVrVrZo0aLs//7v/7I//OEPrTg1jdXQ/Z47d27WoUOH7Fe/+lW2cOHCbO7cudngwYOzs88+u5UnpzFmzpyZTZ48OXvyySeziMhmzJjxlee3p17LuziuqKjIxo0bt82xQw89NLvqqqt2ev4VV1yRHXroodsc+/GPf5wdf/zxLTYjzaeh+70zZWVl2S9/+cvmHo0W0Nj9Pu+887Jrr702u/7668VxO9LQ/X722WezHj16ZCtXrmyN8WhmDd3v//iP/8gGDBiwzbE77rgjKykpabEZaRm7E8ftqdfy6mMVGzdujNdffz1Gjhy5zfGRI0fGK6+8stPX/PGPf9zh/FGjRsVrr70WX375ZYvNStM1Zr+3t2XLlli7dm0UFRW1xIg0o8bu9wMPPBALFiyI66+/vqVHpBk1Zr9/97vfxZAhQ+KWW26JPn36xCGHHBI///nPY/369a0xMk3QmP0eNmxY1NbWxsyZMyPLsvjkk0/iiSeeiH/4h39ojZFpZe2p1wraeoC/tWLFiti8eXP07t17m+O9e/eOZcuW7fQ1y5Yt2+n5mzZtihUrVkRxcXGLzUvTNGa/t3frrbdGXV1dnHvuuS0xIs2oMfv9/vvvx1VXXRVz586NgoK8+scVX6Mx+71w4cJ4+eWXo3PnzjFjxoxYsWJF/Mu//EusWrXK547zXGP2e9iwYfHwww/HeeedFxs2bIhNmzbFWWedFXfeeWdrjEwra0+9lldXjrfK5XLbPM6ybIdjX3f+zo6Tnxq631s9+uij8Ytf/CKmT58e+++/f0uNRzPb3f3evHlzXHDBBfHLX/4yDjnkkNYaj2bWkL/fW7ZsiVwuFw8//HBUVFTEd7/73Zg6dWo8+OCDrh63Ew3Z7+rq6vjpT38a1113Xbz++uvx3HPPxaJFi2LcuHGtMSptoL30Wl5diunZs2d07Nhxh3/LXL58+Q7/trHVAQccsNPzCwoKYr/99muxWWm6xuz3VtOnT4+LL744Hn/88Tj11FNbckyaSUP3e+3atfHaa6/F/Pnz4yc/+UlE/DWesiyLgoKCeOGFF+KUU05pldlpuMb8/S4uLo4+ffpEjx496o8ddthhkWVZ1NbWxsEHH9yiM9N4jdnvG2+8MU488cS4/PLLIyLiyCOPjK5du8ZJJ50UN9xwQ15dSaTp2lOv5dWV47322ivKy8tj1qxZ2xyfNWtWDBs2bKevOeGEE3Y4/4UXXoghQ4ZEp06dWmxWmq4x+x3x1yvGP/jBD+KRRx7x2bR2pKH73b1793jrrbfijTfeqP8ZN25cDBo0KN5444047rjjWmt0GqExf79PPPHE+Oijj2LdunX1x/7yl79Ehw4doqSkpEXnpWkas9+ff/55dOiwbYZ07NgxIv7/FUX2HO2q19roi4C7tPVWMPfdd19WXV2dTZw4MevatWu2ePHiLMuy7KqrrsrGjh1bf/7WW4P867/+a1ZdXZ3dd999eXtrEHbU0P1+5JFHsoKCgqyysjL7+OOP638+++yztvoj0AAN3e/tuVtF+9LQ/V67dm1WUlKSjRkzJnvnnXeyOXPmZAcffHB2ySWXtNUfgQZo6H4/8MADWUFBQXbXXXdlCxYsyF5++eVsyJAhWUVFRVv9EWiAtWvXZvPnz8/mz5+fRUQ2derUbP78+fW37mvPvZZ3cZxlWVZZWZn169cv22uvvbJjjz02mzNnTv1zF110UTZ8+PBtzq+qqsqOOeaYbK+99soOOuig7O67727liWmKhuz38OHDs4jY4eeiiy5q/cFplIb+/f5b4rj9aeh+v/vuu9mpp56adenSJSspKckmTZqUff755608NY3V0P2+4447srKysqxLly5ZcXFx9v3vfz+rra1t5alpjBdffPEr//e4PfdaLsv8fxcAABCRZ585BgCAtiSOAQAgEccAAJCIYwAASMQxAAAk4hgAABJxDAAAiTgGAIBEHAMAQCKOAQAgEccAAJD8P07w49W+NtKxAAAAAElFTkSuQmCC", | ||
"text/plain": [ | ||
"<Figure size 800x800 with 2 Axes>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"# Generate figure (set its size (width, height) in inches) and axes\n", | ||
"plt.figure(figsize=(8, 8))\n", | ||
"ax = plt.axes()\n", | ||
"\n", | ||
"# Set y-axis to have log-scale\n", | ||
"plt.yscale('log')\n", | ||
"\n", | ||
"# Specify which contours should be drawn\n", | ||
"levels = np.linspace(-55, 55, 23)\n", | ||
"\n", | ||
"# Plot contour lines\n", | ||
"lines = U.plot.contour(ax=ax,\n", | ||
" levels=levels,\n", | ||
" colors='black',\n", | ||
" linewidths=0.5,\n", | ||
" linestyles='solid',\n", | ||
" add_labels=False)\n", | ||
"\n", | ||
"# Create second y-axis to show geo-potential height.\n", | ||
"axRHS = gv.add_height_from_pressure_axis(ax, heights=[4, 8])\n", | ||
"\n", | ||
"plt.show();" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "geocat_viz_build", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.0" | ||
}, | ||
"orig_nbformat": 4 | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.