Luc Sagnières, 2018
McGill University
Aerospace Mechatronics Laboratory
[email protected]
Version: 1.0.1
Release Date: November 16, 2020
READ DOCUMENTATION BEFORE USE.
A useful source is the Software User Manual and other documentation in the lab repo.
- You will need GFortran to execute the code contained in this repo.
Follow these instructions to install it in your environment.
A stable recommended release is recommended (at least
8.1.0
) - If you are working on MacOS, you'll have to link it manually
ln -s /usr/local/Cellar/gcc/8.2.0/lib/gcc/8/libgfortran.* /usr/local/lib
- We are leveraging the GNU functionalities of
make
with a version>4
. To install it on make you can dobrew install homebrew/core/make
and use it with callinggmake
instead ofmake
.make
will remain with the default older version on mac3.81
andgmake
will be the newer version.
make test
It will print out your compiler information. You can put your own compiler as such:
fortranCompiler=myFortranCompiler gplusCompiler=myg++Compiler gccCompiler=myGccCompiler make test
Otherwise there are default compilers defined in the Makefile
.
This should create in the output folder the files that should be equal to the reference files
make clean
This will clean the test folder of the created .mod
, .o
and executable
files.
The two compiled executable
files can then be used freely by the user to run D-SPOSE according to the input text files in the intput foler.
The first converts the Two-Line Element contained in TLE.txt
into an osculating position and velocity vector contained in initial_conditions.txt
using the SGP4 algorithm:
./tle2rv_exec
The second runs the coupled orbit-attitude propagator using the parameters in the other input files in the intput foler and outputs the information in the output folder:
./dspose_exec
-
Textbooks:
- Vallado D.A. (2013), Funamentals of Astrodynamics and Applications, Fourth Edition, Microcosm Press. ISBN 978-1881883180.
- Hughes, P.C. (2004), Spacecraft Attitude Dynamics, Dover Publications, Inc. ISBN 978-0-486-43925-9.
- Montenbruck, O., and Gill, E. (2012), Satellite Orbits: Models, Methods, Applications, Springer-Verlag Berlin Heidelberg. ISBN: 978-3-540-67280-7.
-
SGP4:
- Vallado, D. A., P. Crawford, R. Hujsak, and T. S. Kelso (2006), Revisiting Spacetrack Report #3: Rev 2.
-
Environmental Models:
- Bowman, B. R. (2008), A New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices, In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA 2008-6438, Honolulu, Hawaii, doi:10.2514/6.2008-6438.
- Drob, D. P. et al. (2015), An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth and Space Science, 2:301–319, 2015. doi:10.1002/2014EA000089.
- Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research, 117:B04406, 2012. doi:10.1029/2011JB008916.
- Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, Journal of Geophysical Research, 107(A12):1468, doi:10.1029/2002JA009430.
- Thébault, E. et al. (2015), International Geomagnetic Reference Field: the 12th generation, Earth Planet Sp, 67(79), doi:10.1186/s40623-015-0228-9.
- Chulliant, A. et al. (2015), Tehcnical Report, National Geophysical Data Center, NOAA, doi:10.7289/V5TB14V7.
- Kane, T., and Barba, P. (1966), “Effects of Energy Dissipation on a Spinning Satellite,” AIAA Journal, Vol. 4, 1392–1394, doi:10.2514/3.3683.
- Stephens, G. L., Campbell, G. G., and Vonder Haar, T. H. (1981), Earth Radiation Budgets, Journal of Geophysical Research, Vol. 86, pp. 9739-9760. doi:10.1029/JC086iC10p09739.
-
Input Data: