Skip to content

Max-Fu/franka-scripted

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Running Automatic Cube Data Collection on Franka

This repository shows how to run automatic cube data collection on a Franka Emika Robot. The setup requires the franka connected to a NUC (running realtime system) via ethernet, a workstation connected to the NUC via ethernet. 3 Logitech Brio cameras are connected to the workstation. The NUC's IP is set to 10.0.0.1 and we set the workstation's IP to 10.0.0.2.

Polymetis installation

On NUC:

First open firefox to enable fcl on franka:

ssh -X <username>@10.0.0.1
firefox
https://172.16.0.2/desk/

Then, create conda environment and activate it.

ssh <username>@10.0.0.1
conda create -n polymetis python=3.8
conda activate polymetis
conda install mamba -n base -c conda-forge
mamba install -c pytorch -c fair-robotics -c aihabitat -c conda-forge polymetis

Ideally in a tmux session, fire up the robot server

sudo pkill -9 run_server
launch_robot.py robot_client=franka_hardware

In another tmux session, fire up the gripper server

launch_gripper.py gripper=franka_hand

On the workstation

Install polymetis, note that the dependency is different from this repo.

conda create -n polymetis python=3.8
conda activate polymetis
conda install mamba -n base -c conda-forge
mamba install pytorch torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
mamba install -c pytorch -c fair-robotics -c aihabitat -c conda-forge polymetis

Clone fairo

git clone https://github.com/facebookresearch/fairo.git
cd fairo/polymetis/examples

Since the ip address of NUC is 10.0.0.1, we have to change the example a bit: For each of

robot = RobotInterface(
    ip_address="localhost",
)

change it to

robot = RobotInterface(
    ip_address="10.0.0.1",
)

On Franka Desk / Setting, update mass and inertia matrix according to

https://github.com/frankaemika/external_gripper_example/blob/master/panda_with_robotiq_gripper_example/config/endeffector-config.json

This will compensate for the additional weight of the camera on the end effector.

Note that franka end effector quaternion uses xyzw formulation, and the "standard" axes are the ones provided by Franka, which happen to be visually off by 45 degrees from the symmetries of the Franka Hand shape.

Set up camera

Run v4l2-ctl --list-devices. To test out particular camera feed: first install sudo apt install ffmpeg, then based on v4l2 run ffplay /dev/video{i}

Using this, find out the camera id correspond to left, hand, and right camera (just the numbers).

To list the available controls: v4l2-ctl -d /dev/video8 -l

Current setting (all three cameras):

v4l2-ctl -d /dev/video0 -c focus_auto=0
v4l2-ctl -d /dev/video4 -c focus_auto=0
v4l2-ctl -d /dev/video8 -c focus_auto=0

Installation

pip install -r requirements.txt

To install fcl, first, install octomap, which is necessary to use OcTree. For Ubuntu, use sudo apt-get install liboctomap-dev. Second, install FCL using the instructions provided here. If you're on Ubuntu 17.04 or newer, you can install FCL using sudo apt-get install libfcl-dev.

Then we install the Python wrappers for FCL:

pip install python-fcl

Install Python packages from third_party:

pushd third_party/autolab_core && pip install -e . && popd
pushd third_party/perception && pip install -e . && popd

Data Collection

You can remove or add --gripper_blocking to record or not record data while closing gripper. Additional flags include --data_dir, --dir_name, --num_demos, --wrist_cam_id, --vis. By default, wrist_cam_id=(4,0,8), which represent the left camera, hand camera, and right camera.

Data collection for Picking 1/n objects

python tools/gen_structured_grasp.py --num_demos 40 --dir_name pick-green-cube

Data Collection for Stacking 1/n objects

python tools/gen_structured_stack.py --num_demos 40 --dir_name stack-green-yellow-cube

(Experimental) Data Collection for DexNet

(Warning) This requires to build polymetis from scratch, which involves modification to polymetis' setup. The conda environment name will be polymetis-local, adjust accordingly if needed in cfg/environment.yml. Disclaimer: since the depth camera has a lower resolution and precision and we are using a different setup than the original DexNet setup, the grasps are not guaranteed to be as precise as the original DexNet formulation.

Installation

Please reference the official polymetis build documentation.

# Clone fairo
git clone [email protected]:facebookresearch/fairo
cd fairo/polymetis

# replace the environment config file 
mv polymetis/environment.yml polymetis/environment_old.yml
cp <franka-scripted path>/cfg/environment.yml polymetis/environment.yml

# one system level installation
sudo apt-get install libboost-all-dev

# create conda environment
conda env create -f ./polymetis/environment.yml
conda activate polymetis-local
conda install mamba -n base -c conda-forge
mamba install -y -c conda-forge poco
mamba install -y boost
pip install -e ./polymetis
pip install pyglet==1.4.10
mamba install -y tensorflow-gpu=1.14

# compile polymetis 
mkdir -p ./polymetis/build
cd ./polymetis/build

cmake .. -DCMAKE_BUILD_TYPE=Release -DBUILD_FRANKA=OFF -DBUILD_TESTS=OFF -DBUILD_DOCS=OFF
make -j

# Installing DexNet
pushd third_party/autolab_core && pip install -e . && popd
pushd third_party/perception && pip install -e . && popd
pushd third_party/gqcnn && pip install -e . && popd

Common failures:

  1. gRPC related errors (i.e. CMake Error at grpc/cmake/build/gRPCConfig.cmake:15 (include): ...)

Solution: mamba install -c conda-forge grpc-cpp==1.41.1

  1. Boost related errors (i.e. Could NOT find Boost (missing: serialization))

Solution: sudo apt-get install libboost-all-dev

Calibration

In our experiments, we use an overhead realsense L515 camera. To run the DexNet code base, we require a camera extrinsics calibration file. An example is provided in cfg/T_realsense_world.tf. The format follows the definition in autolab_core:

realsense
world
translation (space separated)
rotation_row_0 (space separated)
rotation_row_1 (space separated)
rotation_row_2 (space separated)

We use the CV2 checkerboard to obtain the camera calibration. We set the checkerboard to have solid square corners in the robots positive y direction. A procedure that we use is to first find the chessboard in robot transformation by manually placing the robot's end effector on the chessboard to obtain cfg/T_gripper_world.tf, then move the end effector away so that the chessboard is in the camera's view. We then move the end effector away from the checkerboard, and run

python tools/camera_registration.py

This will save the camera pose in robot base frame to cfg/T_realsense_world.tf.

Data Collection

To start collecting data, run

python tools/gen_demos_grasp.py --num_demos 40 --dir_name dexnet_bin_pick

About

Writing Scripted Policies for Franka Emika

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages