-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit e3fc3e7
Showing
136 changed files
with
16,682 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
# Sphinx build info version 1 | ||
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. | ||
config: fcdc215d0bedfc57a14a8d537aa21449 | ||
tags: 645f666f9bcd5a90fca523b33c5a78b7 |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Empty file.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# About this code | ||
|
||
This documentation is under construction |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
aauvarmeplan2021 | ||
================ | ||
|
||
.. py:module:: aauvarmeplan2021 | ||
.. autoapi-nested-parse:: | ||
|
||
Pre-Processing of the Varmeplan 2021 dataset | ||
|
||
Aalborg dataset, can be used to get individual and district heat gross supply: | ||
https://vbn.aau.dk/da/datasets/kommunepakker-varmeplan-danmark-2021 | ||
- Note that heat demand should be combined wrt. the s1-s5 scenarios (sums to 53.95 TWh without heat efficiency investments) | ||
|
||
Assumption for distribution of low-, mid- and high temperatures should probably come from: | ||
Viegand Maagø and Energistyrelsen. ‘Kortlægning Af Energiforbrug Og Opgørelse Af Energisparepotentialer i Produktionserhvervene’, 2022. | ||
See page 8: | ||
“ | ||
- Omkring 45% af forbruget ligger ved temperaturer under 100 ºC – totalt 26.798 TJ/år | ||
- Godt 40% ligger ved temperaturer over 200 ºC – totalt 23.774 TJ/år | ||
- Resten, altså ca. 15%, ligger i intervallet 100 – 200 ºC eller derover | ||
”, Viegand Maagø and Energistyrelsen, 2022, p. 8 | ||
|
||
One simple, first assumption could be to say that 40-55% is high temperature, | ||
and use that amount of TJ to distribute the sum of TJ in the "over 80C" category | ||
of Aalborg data into high and middle temperature (middle temperature is the remaining over 80C) | ||
- E.g.: | ||
- 59496 TJ/år in total | ||
- 32723 TJ/år for >100 C (55%) | ||
AAU data: | ||
GJ_over_80 17.1217 % 3369.050427 TJ | ||
GJ_60_80C 12.1648 % 2393.687324 TJ | ||
GJ_under_6 70.7135 % 13914.38463 TJ | ||
..doesn't really fit - maybe the assumption that surplus heat above 80C comes from high, 60-80C from mid and below 60C from low is good enough? | ||
for that to be true: | ||
- 17.1217 + 12.1648 = 29.2865 | ||
- 40 - 29.2865 = 10.7135 | ||
- 10.7135 / 0.7 = 15.305% of GJ_under_6 is high, plus 100% of GJ_60_80C and 100% of GJ_over_80 | ||
- 15% / 0.7 = 21.42857142857143 of GJ_under_6 is mid | ||
- 45% / 0.7 = 64.28571428571429 of GJ_under_6 is low | ||
|
||
Python package requirements: | ||
- xlrd | ||
|
||
Created on 26.08.2024 | ||
@author: Mathias Berg Rosendal, PhD Student at DTU Management (Energy Economics & Modelling) | ||
|
||
|
||
|
||
Attributes | ||
---------- | ||
|
||
.. autoapisummary:: | ||
|
||
aauvarmeplan2021.style | ||
aauvarmeplan2021.fc | ||
aauvarmeplan2021.data | ||
|
||
|
||
Classes | ||
------- | ||
|
||
.. autoapisummary:: | ||
|
||
aauvarmeplan2021.VPDK21 | ||
|
||
|
||
Module Contents | ||
--------------- | ||
|
||
.. py:data:: style | ||
:value: 'report' | ||
|
||
|
||
.. py:data:: fc | ||
:value: 'white' | ||
|
||
|
||
.. py:class:: VPDK21(scenario: str = 'SUM_GWh_uden_besp') | ||
.. py:attribute:: files | ||
.. py:attribute:: DH | ||
.. py:attribute:: IND | ||
.. py:attribute:: correct_names | ||
.. py:attribute:: temp | ||
.. py:attribute:: names | ||
:value: ['year', 'municipality', 'user'] | ||
|
||
|
||
|
||
.. py:data:: data | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
clustering | ||
========== | ||
|
||
.. py:module:: clustering | ||
.. autoapi-nested-parse:: | ||
|
||
TITLE | ||
|
||
Description | ||
|
||
Created on 11.09.2024 | ||
@author: Mathias Berg Rosendal, PhD Student at DTU Management (Energy Economics & Modelling) | ||
|
||
|
||
|
||
Attributes | ||
---------- | ||
|
||
.. autoapisummary:: | ||
|
||
clustering.cmap | ||
clustering.style | ||
clustering.fc | ||
clustering.collected | ||
|
||
|
||
Functions | ||
--------- | ||
|
||
.. autoapisummary:: | ||
|
||
clustering.truncate_colormap | ||
clustering.correct_VRE_data | ||
clustering.convert_municipal_code_to_name | ||
clustering.collect_clusterdata | ||
clustering.cluster | ||
|
||
|
||
Module Contents | ||
--------------- | ||
|
||
.. py:data:: cmap | ||
.. py:function:: truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100) | ||
.. py:data:: style | ||
:value: 'ppt' | ||
|
||
|
||
.. py:data:: fc | ||
:value: 'white' | ||
|
||
|
||
.. py:function:: correct_VRE_data(path_to_file, generation_name: str) | ||
.. py:function:: convert_municipal_code_to_name(to_be_converted: pandas.DataFrame, column_to_convert: (str, int), pivot_table: bool = False, exclude_regions: list = ['Herlev', 'Christiansø'], muni_geofile_path: str = 'C:\\Users\\mberos\\gitRepos\\balmorel-preprocessing\\RawDataProcessing\\Data\\Shapefiles\\Denmark\\Adm\\gadm36_DNK_2.shp') | ||
.. py:function:: collect_clusterdata(energinet_el: pandas.DataFrame, plot_cf: bool = False) | ||
.. py:function:: cluster(con: Modules.Submodules.municipal_template.DataContainer, n_clusters: int, use_connectivity: bool = True, manual_corrections: list = [['Bornholm', 'Christiansø', 1], ['Bornholm', 'Dragør', 1], ['Esbjerg', 'Fanø', 1], ['Rødovre', 'Frederiksberg', 1], ['Slagelse', 'Nyborg', 0], ['Samsø', 'Kalundborg', 0]], connection_remark: str = 'connec. included + artifical', data_remark: str = 'all combined + xy coords') | ||
.. py:data:: collected | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
createDE | ||
======== | ||
|
||
.. py:module:: createDE | ||
.. autoapi-nested-parse:: | ||
|
||
Create electricity demand profiles for Denmark | ||
Use Energinet data for municipalities: | ||
https://www.energidataservice.dk/tso-electricity/consumptionindustry | ||
Convert LAU code to municipality name with: | ||
LAU – NUTS 2021, EU-27 and EFTA / available candidate countries | ||
https://ec.europa.eu/eurostat/web/nuts/local-administrative-units | ||
Note: The dataset above also contains population | ||
|
||
Created on 22.08.2024 | ||
|
||
@author: Mathias Berg Rosendal, PhD Student at DTU Management (Energy Economics & Modelling) | ||
|
||
|
||
|
||
Attributes | ||
---------- | ||
|
||
.. autoapisummary:: | ||
|
||
createDE.cmap | ||
createDE.style | ||
createDE.fc | ||
|
||
|
||
Functions | ||
--------- | ||
|
||
.. autoapisummary:: | ||
|
||
createDE.convert_names | ||
createDE.make_inc_file | ||
createDE.main | ||
|
||
|
||
Module Contents | ||
--------------- | ||
|
||
.. py:data:: cmap | ||
.. py:data:: style | ||
:value: 'report' | ||
|
||
|
||
.. py:data:: fc | ||
:value: 'white' | ||
|
||
|
||
.. py:function:: convert_names(conversion_file: str, el_dataset: str) | ||
.. py:function:: make_inc_file(xarray: xarray.Dataset, data_variable: str, selection: Tuple[dict, None] = None, sets_to_sum: Tuple[str, list, None] = None) | ||
.. py:function:: main(conversion_file: str, el_dataset: str, show_difference: bool = False) | ||
Main function to process and convert dataset names, and create .inc files. | ||
Args: | ||
conversion_file (str): Path to the file containing conversion mappings. | ||
el_dataset (str): Path to the dataset file to be processed. | ||
show_difference (bool, optional): Flag to indicate whether to print the | ||
dataset before and after conversion. | ||
Defaults to False. | ||
Returns: | ||
None | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
createDH | ||
======== | ||
|
||
.. py:module:: createDH | ||
.. autoapi-nested-parse:: | ||
|
||
Creating Danish heat demand for Balmorel | ||
|
||
Futuregas dataset default. Can be used to get temporal profiles | ||
|
||
Aalborg dataset, can be used to get individual and district heat gross supply: | ||
https://vbn.aau.dk/da/datasets/kommunepakker-varmeplan-danmark-2021 | ||
- Note that heat demand should be combined wrt. the s1-s5 scenarios (sums to 53.95 TWh without heat efficiency investments) | ||
|
||
Python package requirements: | ||
- xlrd | ||
|
||
Created on 11.03.2024 | ||
|
||
@author: Mathias Berg Rosendal, PhD Student at DTU Management (Energy Economics & Modelling) | ||
|
||
|
||
|
||
Attributes | ||
---------- | ||
|
||
.. autoapisummary:: | ||
|
||
createDH.cmap | ||
createDH.style | ||
createDH.fc | ||
createDH.X | ||
|
||
|
||
Classes | ||
------- | ||
|
||
.. autoapisummary:: | ||
|
||
createDH.DistrictHeat | ||
createDH.DistrictHeatAAU | ||
|
||
|
||
Functions | ||
--------- | ||
|
||
.. autoapisummary:: | ||
|
||
createDH.find_value | ||
|
||
|
||
Module Contents | ||
--------------- | ||
|
||
.. py:data:: cmap | ||
.. py:data:: style | ||
:value: 'report' | ||
|
||
|
||
.. py:data:: fc | ||
:value: 'white' | ||
|
||
|
||
.. py:class:: DistrictHeat(dataset: str = 'Denmark_Futuregas') | ||
Class for district heating data | ||
|
||
Existing datasets: | ||
- Denmark_Futuregas | ||
|
||
Args: | ||
dataset (str, optional): _description_. Defaults to 'DK'. | ||
|
||
|
||
.. py:method:: assign_DH(areas: geopandas.GeoDataFrame, df_intercepts: pandas.DataFrame, value_col: str = 'Value') -> None | ||
DH data must have A and Y sets, where A matches the areas index | ||
|
||
Ends up with format: | ||
|
||
Y1 Y2 Y3 -- YN | ||
|
||
A1 | ||
|
||
A2 | ||
|
||
| | ||
AM | ||
|
||
|
||
|
||
.. py:method:: assign_DHT(areas: geopandas.GeoDataFrame, df_intercepts: pandas.DataFrame, value_col: str = 'Value', agg_func: str = 'sum') -> None | ||
DHT data must have S.T and A sets, where A matches the areas index | ||
|
||
Ends up with format: | ||
|
||
A1 A2 A3 -- AN | ||
|
||
S01 . T001 | ||
|
||
S01 . T002 | ||
|
||
| | ||
S52 . T168 | ||
|
||
|
||
|
||
|
||
.. py:method:: assign_DH_profile() | ||
.. py:method:: join_geo_with(df: pandas.DataFrame, kwargs: dict = {'how': 'inner'}) -> None | ||
.. py:method:: plot_original_data(year: str, areas: geopandas.GeoDataFrame, plot_density: bool = False, fc: str = 'white', area_fc: Union[str, list] = [0.85, 0.85, 0.85], ax: Union[matplotlib.axes._axes.Axes, str] = '') -> tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes] | ||
.. py:method:: plot_aggregated_data(year: str, areas: geopandas.GeoDataFrame, plot_density: bool = False) -> tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes] | ||
.. py:function:: find_value(df: pandas.DataFrame, element: any, func: str = 'max', ind: int = 0) -> any | ||
.. py:class:: DistrictHeatAAU | ||
.. py:attribute:: f1 | ||
.. py:attribute:: f2 | ||
.. py:method:: combine_data(plot: bool = False) | ||
.. py:data:: X | ||
Oops, something went wrong.