Skip to content

Commit

Permalink
cumsum(trj_l) for speed with long trajectories
Browse files Browse the repository at this point in the history
  • Loading branch information
JakobAsslaender committed Nov 12, 2024
1 parent 89fe350 commit b87ae3a
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 16 deletions.
16 changes: 8 additions & 8 deletions src/BackProjection.jl
Original file line number Diff line number Diff line change
Expand Up @@ -30,17 +30,17 @@ function calculateBackProjection(data::AbstractVector{<:AbstractArray{cT}}, trj:
Ncoil = size(data[1], 2)
xbp = Array{cT}(undef, img_shape..., Ncoef, Ncoil)

trj_l = [size(trj[it], 2) for it in eachindex(trj)]
data_temp = Vector{cT}(undef, sum(trj_l))
trj_idx = cumsum([size(trj[it],2) for it in eachindex(trj)])
data_temp = Vector{cT}(undef, trj_idx[end])

img_idx = CartesianIndices(img_shape)
verbose && println("calculating backprojection...")
flush(stdout)
for icoef axes(U, 2)
t = @elapsed for icoil axes(data[1], 2)
@simd for it in eachindex(data)
idx1 = sum(trj_l[1:it-1]) + 1
idx2 = sum(trj_l[1:it])
idx1 = (it == 0) ? 1 : trj_idx[it-1] + 1
idx2 = trj_idx[it]
@views data_temp[idx1:idx2] .= data[it][:, icoil] .* conj(U[it, icoef])
end
applyDensityCompensation!(data_temp, trj_v; density_compensation)
Expand All @@ -64,16 +64,16 @@ function calculateBackProjection(data::AbstractVector{<:AbstractMatrix{cT}}, trj
xbp = zeros(cT, img_shape..., Ncoef)
xtmp = Array{cT}(undef, img_shape)

trj_l = [size(trj[it], 2) for it in eachindex(trj)]
data_temp = Vector{cT}(undef, sum(trj_l))
trj_idx = cumsum([size(trj[it],2) for it in eachindex(trj)])
data_temp = Vector{cT}(undef, trj_idx[end])
img_idx = CartesianIndices(img_shape)
verbose && println("calculating backprojection...")
flush(stdout)
for icoef axes(U, 2)
t = @elapsed for icoil eachindex(cmaps)
@simd for it in eachindex(data)
idx1 = sum(trj_l[1:it-1]) + 1
idx2 = sum(trj_l[1:it])
idx1 = (it == 0) ? 1 : trj_idx[it-1] + 1
idx2 = trj_idx[it]
@views data_temp[idx1:idx2] .= data[it][:, icoil] .* conj(U[it, icoef])
end
applyDensityCompensation!(data_temp, trj_v; density_compensation)
Expand Down
16 changes: 8 additions & 8 deletions src/NFFTNormalOpBasisFunc.jl
Original file line number Diff line number Diff line change
Expand Up @@ -105,21 +105,21 @@ function calculateToeplitzKernelBasis(img_shape_os, trj::AbstractVector{<:Abstra
λ2 = similar(λ)
Λ = Array{Complex{T}}(undef, Ncoeff, Ncoeff, length(kmask_indcs))

trj_l = [size(trj[it],2) for it in eachindex(trj)]
S = Vector{Complex{T}}(undef, sum(trj_l))
trj_idx = cumsum([size(trj[it],2) for it in eachindex(trj)])
S = Vector{Complex{T}}(undef, trj_idx[end])

fftplan = plan_fft(λ; flags = FFTW.MEASURE, num_threads=Threads.nthreads())
nfftplan = plan_nfft(reduce(hcat, trj), img_shape_os; precompute = TENSOR, blocking = true, fftflags = FFTW.MEASURE, m=5, σ=2)

# Evaluating only the upper triangular matrix assumes that the PSF from the rightmost voxel to the leftmost voxel is the adjoint of the PSF in the opposite direction.
# For the outmost voxel, this is not correct, but the resulting images are virtually identical in our test cases.
# To avoid this error, remove the `if ic2 >= ic1` and the `Λ[ic2,ic1,it] = conj.(λ[kmask_indcs[it]])` statements at the cost of computation time.
# Evaluating only the upper triangular matrix assumes that the PSF from the rightmost voxel to the leftmost voxel is the adjoint of the PSF in the opposite direction.
# For the outmost voxel, this is not correct, but the resulting images are virtually identical in our test cases.
# To avoid this error, remove the `if ic2 >= ic1` and the `Λ[ic2,ic1,it] = conj.(λ[kmask_indcs[it]])` statements at the cost of computation time.
for ic2 axes(Λ, 2), ic1 axes(Λ, 1)
if ic2 >= ic1 # eval. only upper triangular matrix
t = @elapsed begin
@simd for it axes(U,1)
idx1 = sum(trj_l[1:it-1]) + 1
idx2 = sum(trj_l[1:it])
idx1 = (it == 0) ? 1 : trj_idx[it-1] + 1
idx2 = trj_idx[it]
@inbounds S[idx1:idx2] .= conj(U[it,ic1]) * U[it,ic2]
end

Expand All @@ -128,7 +128,7 @@ function calculateToeplitzKernelBasis(img_shape_os, trj::AbstractVector{<:Abstra
mul!(λ, fftplan, λ2)

Threads.@threads for it eachindex(kmask_indcs)
@inbounds Λ[ic2,ic1,it] = conj.(λ[kmask_indcs[it]])
@inbounds Λ[ic2,ic1,it] = conj.(λ[kmask_indcs[it]])
@inbounds Λ[ic1,ic2,it] = λ[kmask_indcs[it]]
end
end
Expand Down

0 comments on commit b87ae3a

Please sign in to comment.