-
Notifications
You must be signed in to change notification settings - Fork 184
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Default behaviour is now to use optimal shrinkage based on minimisation of the Frobenius norm. - Prior behaviour can be accessed using "-filter truncate". Closes #3022.
- Loading branch information
Showing
1 changed file
with
110 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -31,6 +31,9 @@ const std::vector<std::string> shapes = {"cuboid", "sphere"}; | |
enum class shape_type { CUBOID, SPHERE }; | ||
constexpr default_type sphere_multiplier_default = 1.0 / 0.85; | ||
|
||
const std::vector<std::string> filters = {"truncate", "frobenius"}; | ||
enum class filter_type { TRUNCATE, FROBENIUS }; | ||
|
||
// clang-format off | ||
void usage() { | ||
|
||
|
@@ -76,11 +79,18 @@ void usage() { | |
"the command will select the smallest isotropic patch size " | ||
"that exceeds the number of DW images in the input data; " | ||
"e.g., 5x5x5 for data with <= 125 DWI volumes, " | ||
"7x7x7 for data with <= 343 DWI volumes, etc."; | ||
"7x7x7 for data with <= 343 DWI volumes, etc." | ||
|
||
+ "By default, optimal value shrinkage based on minimisation of the Frobenius norm " | ||
"will be used to attenuate eigenvectors based on the estimated noise level. " | ||
"Hard truncation of sub-threshold components" | ||
"---which was the behaviour of the dwidenoise command in version 3.0.x---" | ||
"can be activated using -filter truncate."; | ||
|
||
AUTHOR = "Daan Christiaens ([email protected])" | ||
" and Jelle Veraart ([email protected])" | ||
" and J-Donald Tournier ([email protected])"; | ||
" and J-Donald Tournier ([email protected])" | ||
" and Robert E. Smith ([email protected])"; | ||
|
||
REFERENCES | ||
+ "Veraart, J.; Novikov, D.S.; Christiaens, D.; Ades-aron, B.; Sijbers, J. & Fieremans, E. " // Internal | ||
|
@@ -117,6 +127,10 @@ void usage() { | |
"* Exp1: the original estimator used in Veraart et al. (2016), or \n" | ||
"* Exp2: the improved estimator introduced in Cordero-Grande et al. (2019).") | ||
+ Argument("Exp1/Exp2").type_choice(estimators) | ||
+ Option("filter", | ||
"Modulate how components are filtered based on their eigenvalues; " | ||
"options are: " + join(filters, ",") + "; default: frobenius") | ||
+ Argument("choice").type_choice(filters) | ||
|
||
+ OptionGroup("Options for exporting additional data regarding PCA behaviour") | ||
+ Option("noise", | ||
|
@@ -125,10 +139,13 @@ void usage() { | |
"Note that on complex input data," | ||
" this will be the total noise level across real and imaginary channels," | ||
" so a scale factor sqrt(2) applies.") | ||
+ Argument("level").type_image_out() | ||
+ Argument("image").type_image_out() | ||
+ Option("rank", | ||
"The selected signal rank of the output denoised image.") | ||
+ Argument("cutoff").type_image_out() | ||
+ Argument("image").type_image_out() | ||
+ Option("sumweights", | ||
"the sum of eigenvector weights contributed to the output image") | ||
+ Argument("image").type_image_out() | ||
+ Option("max_dist", | ||
"The maximum distance between a voxel and another voxel that was included in the local denoising patch") | ||
+ Argument("image").type_image_out() | ||
|
@@ -146,10 +163,11 @@ void usage() { | |
+ Argument("value").type_float(0.0) | ||
+ Option("radius_ratio", | ||
"Set the spherical kernel size as a ratio of number of voxels to number of input volumes " | ||
"(default: ~1.18)") | ||
"(default: 1.0/0.85 ~= 1.18)") | ||
+ Argument("value").type_float(0.0) | ||
// TODO Command-line option that allows user to specify minimum absolute number of voxels in kernel | ||
+ Option("extent", | ||
"Set the patch size of the cuboid filter; " | ||
"Set the patch size of the cuboid kernel; " | ||
"can be either a single odd integer or a comma-separated triplet of odd integers") | ||
+ Argument("window").type_sequence_int(); | ||
|
||
|
@@ -184,6 +202,7 @@ void usage() { | |
|
||
using real_type = float; | ||
using voxel_type = Eigen::Array<int, 3, 1>; | ||
using vector_type = Eigen::VectorXd; | ||
|
||
class KernelVoxel { | ||
public: | ||
|
@@ -415,26 +434,31 @@ template <typename F> class DenoisingFunctor { | |
|
||
public: | ||
using MatrixType = Eigen::Matrix<F, Eigen::Dynamic, Eigen::Dynamic>; | ||
using SValsType = Eigen::VectorXd; | ||
|
||
DenoisingFunctor(int ndwi, | ||
std::shared_ptr<KernelBase> kernel, | ||
filter_type filter, | ||
Image<bool> &mask, | ||
Image<real_type> &noise, | ||
Image<uint16_t> &rank, | ||
Image<float> &sum_weights, | ||
Image<float> &max_dist, | ||
Image<uint16_t> &voxels, | ||
estimator_type estimator) | ||
: kernel(kernel), | ||
filter(filter), | ||
m(ndwi), | ||
estimator(estimator), | ||
X(ndwi, kernel->estimated_size()), | ||
XtX(std::min(m, kernel->estimated_size()), std::min(m, kernel->estimated_size())), | ||
eig(std::min(m, kernel->estimated_size())), | ||
s(std::min(m, kernel->estimated_size())), | ||
clam(std::min(m, kernel->estimated_size())), | ||
w(std::min(m, kernel->estimated_size())), | ||
mask(mask), | ||
noise(noise), | ||
rankmap(rank), | ||
sumweightsmap(sum_weights), | ||
maxdistmap(max_dist), | ||
voxelsmap(voxels) {} | ||
|
||
|
@@ -461,6 +485,8 @@ template <typename F> class DenoisingFunctor { | |
DEBUG("Expanding decomposition matrix storage from " + str(X.rows()) + " to " + str(r)); | ||
XtX.resize(r, r); | ||
s.resize(r); | ||
clam.resize(r); | ||
w.resize(r); | ||
} | ||
|
||
// Fill matrices with NaN when in debug mode; | ||
|
@@ -471,6 +497,8 @@ template <typename F> class DenoisingFunctor { | |
X.fill(std::numeric_limits<F>::signaling_NaN()); | ||
XtX.fill(std::numeric_limits<F>::signaling_NaN()); | ||
s.fill(std::numeric_limits<default_type>::signaling_NaN()); | ||
clam.fill(std::numeric_limits<default_type>::signaling_NaN()); | ||
w.fill(std::numeric_limits<default_type>::signaling_NaN()); | ||
#endif | ||
|
||
load_data(dwi, neighbourhood.voxels); | ||
|
@@ -486,13 +514,12 @@ template <typename F> class DenoisingFunctor { | |
|
||
// Marchenko-Pastur optimal threshold | ||
const double lam_r = std::max(s[0], 0.0) / q; | ||
double clam = 0.0; | ||
double sigma2 = 0.0; | ||
ssize_t cutoff_p = 0; | ||
for (ssize_t p = 0; p < r; ++p) // p+1 is the number of noise components | ||
{ // (as opposed to the paper where p is defined as the number of signal components) | ||
const double lam = std::max(s[p], 0.0) / q; | ||
clam += lam; | ||
clam[p] = (p == 0 ? 0.0 : clam[p - 1]) + lam; | ||
double denominator = std::numeric_limits<double>::signaling_NaN(); | ||
switch (estimator) { | ||
case estimator_type::EXP1: | ||
|
@@ -505,7 +532,7 @@ template <typename F> class DenoisingFunctor { | |
assert(false); | ||
} | ||
const double gam = double(p + 1) / denominator; | ||
const double sigsq1 = clam / double(p + 1); | ||
const double sigsq1 = clam[p] / double(p + 1); | ||
const double sigsq2 = (lam - lam_r) / (4.0 * std::sqrt(gam)); | ||
// sigsq2 > sigsq1 if signal else noise | ||
if (sigsq2 < sigsq1) { | ||
|
@@ -514,20 +541,38 @@ template <typename F> class DenoisingFunctor { | |
} | ||
} | ||
|
||
if (cutoff_p > 0) { | ||
// recombine data using only eigenvectors above threshold: | ||
s.head(cutoff_p).setZero(); | ||
s.segment(cutoff_p, r - cutoff_p).setOnes(); | ||
if (m <= n) | ||
X.col(neighbourhood.centre_index) = | ||
eig.eigenvectors() * | ||
(s.head(r).cast<F>().asDiagonal() * (eig.eigenvectors().adjoint() * X.col(neighbourhood.centre_index))); | ||
else | ||
X.col(neighbourhood.centre_index) = | ||
X.leftCols(n) * (eig.eigenvectors() * (s.head(r).cast<F>().asDiagonal() * | ||
eig.eigenvectors().adjoint().col(neighbourhood.centre_index))); | ||
// Generate weights vector | ||
double sum_weights = 0.0; | ||
switch (filter) { | ||
case filter_type::TRUNCATE: | ||
w.head(cutoff_p).setZero(); | ||
w.segment(cutoff_p, r - cutoff_p).setOnes(); | ||
sum_weights = r - cutoff_p; | ||
break; | ||
case filter_type::FROBENIUS: { | ||
const double beta = r / q; | ||
const double threshold = 1.0 + std::sqrt(beta); | ||
for (ssize_t i = 0; i != r; ++i) { | ||
const double y = clam[i] / (sigma2 * (i + 1)); | ||
const double nu = y > threshold ? std::sqrt(Math::pow2(Math::pow2(y) - beta - 1.0) - (4.0 * beta)) / y : 0.0; | ||
w[i] = nu / y; | ||
sum_weights += w[i]; | ||
} | ||
} break; | ||
default: | ||
assert(false); | ||
} | ||
|
||
// recombine data using only eigenvectors above threshold: | ||
if (m <= n) | ||
X.col(neighbourhood.centre_index) = | ||
eig.eigenvectors() * | ||
(w.head(r).cast<F>().asDiagonal() * (eig.eigenvectors().adjoint() * X.col(neighbourhood.centre_index))); | ||
else | ||
X.col(neighbourhood.centre_index) = | ||
X.leftCols(n) * (eig.eigenvectors() * (w.head(r).cast<F>().asDiagonal() * | ||
eig.eigenvectors().adjoint().col(neighbourhood.centre_index))); | ||
|
||
// Store output | ||
assign_pos_of(dwi).to(out); | ||
out.row(3) = X.col(neighbourhood.centre_index); | ||
|
@@ -541,6 +586,10 @@ template <typename F> class DenoisingFunctor { | |
assign_pos_of(dwi, 0, 3).to(rankmap); | ||
rankmap.value() = uint16_t(r - cutoff_p); | ||
} | ||
if (sumweightsmap.valid()) { | ||
assign_pos_of(dwi, 0, 3).to(sumweightsmap); | ||
sumweightsmap.value() = sum_weights; | ||
} | ||
if (maxdistmap.valid()) { | ||
assign_pos_of(dwi, 0, 3).to(maxdistmap); | ||
maxdistmap.value() = float(neighbourhood.max_distance); | ||
|
@@ -552,16 +601,27 @@ template <typename F> class DenoisingFunctor { | |
} | ||
|
||
private: | ||
// Denoising configuration | ||
std::shared_ptr<KernelBase> kernel; | ||
filter_type filter; | ||
const ssize_t m; | ||
const estimator_type estimator; | ||
|
||
// Reusable memory | ||
MatrixType X; | ||
MatrixType XtX; | ||
Eigen::SelfAdjointEigenSolver<MatrixType> eig; | ||
SValsType s; | ||
vector_type s; | ||
vector_type clam; | ||
vector_type w; | ||
|
||
Image<bool> mask; | ||
|
||
// Export images | ||
// TODO Group these into a class? | ||
Image<real_type> noise; | ||
Image<uint16_t> rankmap; | ||
Image<float> sumweightsmap; | ||
Image<float> maxdistmap; | ||
Image<uint16_t> voxelsmap; | ||
|
||
|
@@ -580,18 +640,20 @@ void run(Header &data, | |
Image<bool> &mask, | ||
Image<real_type> &noise, | ||
Image<uint16_t> &rank, | ||
Image<float> &sum_weights, | ||
Image<float> &max_dist, | ||
Image<uint16_t> &voxels, | ||
const std::string &output_name, | ||
std::shared_ptr<KernelBase> kernel, | ||
filter_type filter, | ||
estimator_type estimator) { | ||
auto input = data.get_image<T>().with_direct_io(3); | ||
// create output | ||
Header header(data); | ||
header.datatype() = DataType::from<T>(); | ||
auto output = Image<T>::create(output_name, header); | ||
// run | ||
DenoisingFunctor<T> func(data.size(3), kernel, mask, noise, rank, max_dist, voxels, estimator); | ||
DenoisingFunctor<T> func(data.size(3), kernel, filter, mask, noise, rank, sum_weights, max_dist, voxels, estimator); | ||
ThreadedLoop("running MP-PCA denoising", data, 0, 3).run(func, input, output); | ||
} | ||
|
||
|
@@ -613,6 +675,11 @@ void run() { | |
if (!opt.empty()) | ||
estimator = estimator_type(int(opt[0][0])); | ||
|
||
filter_type filter = filter_type::FROBENIUS; | ||
opt = get_options("filter"); | ||
if (!opt.empty()) | ||
filter = filter_type(int(opt[0][0])); | ||
|
||
Image<real_type> noise; | ||
opt = get_options("noise"); | ||
if (!opt.empty()) { | ||
|
@@ -632,6 +699,21 @@ void run() { | |
rank = Image<uint16_t>::create(opt[0][0], header); | ||
} | ||
|
||
Image<float> sum_weights; | ||
opt = get_options("sumweights"); | ||
if (!opt.empty()) { | ||
Header header(dwi); | ||
header.ndim() = 3; | ||
header.datatype() = DataType::Float32; | ||
header.datatype().set_byte_order_native(); | ||
header.reset_intensity_scaling(); | ||
sum_weights = Image<float>::create(opt[0][0], header); | ||
if (filter == filter_type::TRUNCATE) { | ||
WARN("Note that with a truncation filter, " | ||
"output image from -sumweights option will be equivalent to rank"); | ||
} | ||
} | ||
|
||
Image<float> max_dist; | ||
opt = get_options("max_dist"); | ||
if (!opt.empty()) { | ||
|
@@ -714,19 +796,19 @@ void run() { | |
switch (prec) { | ||
case 0: | ||
INFO("select real float32 for processing"); | ||
run<float>(dwi, mask, noise, rank, max_dist, voxels, argument[1], kernel, estimator); | ||
run<float>(dwi, mask, noise, rank, sum_weights, max_dist, voxels, argument[1], kernel, filter, estimator); | ||
break; | ||
case 1: | ||
INFO("select real float64 for processing"); | ||
run<double>(dwi, mask, noise, rank, max_dist, voxels, argument[1], kernel, estimator); | ||
run<double>(dwi, mask, noise, rank, sum_weights, max_dist, voxels, argument[1], kernel, filter, estimator); | ||
break; | ||
case 2: | ||
INFO("select complex float32 for processing"); | ||
run<cfloat>(dwi, mask, noise, rank, max_dist, voxels, argument[1], kernel, estimator); | ||
run<cfloat>(dwi, mask, noise, rank, sum_weights, max_dist, voxels, argument[1], kernel, filter, estimator); | ||
break; | ||
case 3: | ||
INFO("select complex float64 for processing"); | ||
run<cdouble>(dwi, mask, noise, rank, max_dist, voxels, argument[1], kernel, estimator); | ||
run<cdouble>(dwi, mask, noise, rank, sum_weights, max_dist, voxels, argument[1], kernel, filter, estimator); | ||
break; | ||
} | ||
} |