Skip to content

Commit

Permalink
Interpolate BedMachine v5 and MEaSUREs data onto Humboldt mesh.
Browse files Browse the repository at this point in the history
Interpolate BedMachine v5 and MEaSUREs data onto Humboldt mesh,
following the workflow in the landice/greenland/mesh_gen case.
  • Loading branch information
trhille committed Oct 23, 2024
1 parent cab53e2 commit 9b2fe50
Show file tree
Hide file tree
Showing 2 changed files with 88 additions and 6 deletions.
74 changes: 68 additions & 6 deletions compass/landice/tests/humboldt/mesh.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,15 @@
from compass.landice.mesh import build_cell_width, build_mali_mesh
import os

import numpy as np
import xarray as xr
from mpas_tools.scrip.from_mpas import scrip_from_mpas

from compass.landice.mesh import (
build_cell_width,
build_mali_mesh,
clean_up_after_interp,
interp_gridded2mali,
)
from compass.model import make_graph_file
from compass.step import Step

Expand Down Expand Up @@ -27,8 +38,9 @@ def __init__(self, test_case):
super().__init__(test_case=test_case, name='mesh', cpus_per_task=128,
min_cpus_per_task=1)

self.mesh_filename = 'Humboldt.nc'
self.add_output_file(filename='graph.info')
self.add_output_file(filename='Humboldt.nc')
self.add_output_file(filename=self.mesh_filename)
self.add_input_file(
filename='humboldt_1km_2024_01_29.epsg3413.icesheetonly.nc',
target='humboldt_1km_2024_01_29.epsg3413.icesheetonly.nc',
Expand All @@ -49,21 +61,71 @@ def run(self):
"""
logger = self.logger
section_name = 'mesh'
mesh_name = 'Humboldt.nc'
section_gis = self.config['greenland']

nProcs = section_gis.get('nProcs')
src_proj = section_gis.get("src_proj")
data_path = section_gis.get('data_path')
measures_filename = section_gis.get("measures_filename")
bedmachine_filename = section_gis.get("bedmachine_filename")

measures_dataset = os.path.join(data_path, measures_filename)
bedmachine_dataset = os.path.join(data_path, bedmachine_filename)

logger.info('calling build_cell_width')
cell_width, x1, y1, geom_points, geom_edges, floodMask = \
build_cell_width(
self, section_name=section_name,
gridded_dataset='greenland_2km_2024_01_29.epsg3413.nc')
gridded_dataset='greenland_2km_2024_01_29.epsg3413.nc',
flood_fill_start=[100, 700])

build_mali_mesh(
self, cell_width, x1, y1, geom_points, geom_edges,
mesh_name=mesh_name, section_name=section_name,
mesh_name=self.mesh_filename, section_name=section_name,
gridded_dataset='humboldt_1km_2024_01_29.epsg3413.icesheetonly.nc',
projection='gis-gimp', geojson_file='Humboldt.geojson',
cores=self.cpus_per_task)

# Create scrip file for the newly generated mesh
logger.info('creating scrip file for destination mesh')
dst_scrip_file = f"{self.mesh_filename.split('.')[:-1][0]}_scrip.nc"
scrip_from_mpas(self.mesh_filename, dst_scrip_file)

# Now perform bespoke interpolation of geometry and velocity data
# from their respective sources
interp_gridded2mali(self, bedmachine_dataset, dst_scrip_file, nProcs,
self.mesh_filename, src_proj, variables="all")

# only interpolate a subset of MEaSUREs variables onto the MALI mesh
measures_vars = ['observedSurfaceVelocityX',
'observedSurfaceVelocityY',
'observedSurfaceVelocityUncertainty']
interp_gridded2mali(self, measures_dataset, dst_scrip_file, nProcs,
self.mesh_filename, src_proj,
variables=measures_vars)

# perform some final cleanup details
clean_up_after_interp(self.mesh_filename)
logger.info('creating graph.info')
make_graph_file(mesh_filename=mesh_name,
make_graph_file(mesh_filename=self.mesh_filename,
graph_filename='graph.info')

# Do some final validation of the mesh
ds = xr.open_dataset(self.mesh_filename)
# Ensure basalHeatFlux is positive
ds["basalHeatFlux"] = np.abs(ds.basalHeatFlux)
# Ensure reasonable dHdt values
dHdt = ds["observedThicknessTendency"]
# Arbitrary 5% uncertainty; improve this later
dHdtErr = np.abs(dHdt) * 0.05
# Use threshold of |dHdt| > 1.0 to determine invalid data
mask = np.abs(dHdt) > 1.0
# Assign very large uncertainty where data is missing
dHdtErr = dHdtErr.where(~mask, 1.0)
# Remove ridiculous values
dHdt = dHdt.where(~mask, 0.0)
# Put the updated fields back in the dataset
ds["observedThicknessTendency"] = dHdt
ds["observedThicknessTendencyUncertainty"] = dHdtErr
# Write the data to disk
ds.to_netcdf(self.mesh_filename, 'a')
20 changes: 20 additions & 0 deletions compass/landice/tests/humboldt/mesh_gen/mesh_gen.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -42,3 +42,23 @@ use_speed = True
use_dist_to_grounding_line = False
use_dist_to_edge = True
use_bed = True

[greenland]
# path to directory containing BedMachine and Measures datasets
# (default value is for Perlmutter)
data_path = /global/cfs/cdirs/fanssie/standard_datasets/GIS_datasets/

# filename of the BedMachine thickness and bedTopography dataset
# (default value is for Perlmutter)
bedmachine_filename = BedMachineGreenland-v5_edits_floodFill_extrap.nc

# filename of the MEaSUREs ice velocity dataset
# (default value is for Perlmutter)
measures_filename = greenland_vel_mosaic500_extrap.nc

# projection of the source datasets, according to the dictionary keys
# create_SCRIP_file_from_planar_rectangular_grid.py from MPAS_Tools
src_proj = gis-gimp

# number of processors to use for ESMF_RegridWeightGen
nProcs = 128

0 comments on commit 9b2fe50

Please sign in to comment.