Skip to content

DEPTH evaluates the tumor heterogeneity level of each tumor sample based on gene expression profiles Heterogeneity score vignette

License

Notifications You must be signed in to change notification settings

MLi-lab-Bioinformatics-NJUCM/DEPTH

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

DEPTH

DEPTH evaluates the tumor heterogeneity level of each tumor sample based on gene expression profiles Heterogeneity score vignette

Cite the code: DOI

Description

This vignette shows an example of how to use the DEPTH algorithm to calculate tumor heterogeneity level in R.

DEPTH evaluates the tumor heterogeneity level of each tumor sample based on gene expression profiles.

Details

Input Two files need to be input into the DEPTH function:

  1. exp: gene expression profiles in both tumor and normal samples (microarray or RNA-Seq data, normalized);

                               Table 1. RNA expression of input data
    
Identification TCGA-A6-2671-11A-01R-A32Z-07 TCGA-A6-2675-11A-01R-1723-07 TCGA-A6-2675-01A-02R-1723-07
SKAP1 6.22 4.36 6.00
TPSB2 9.39 9.45 9.21
PLXNB3 6.09 8.45 4.95
VAT1L 7.45 7.76 6.13
VIP 9.43 10.99 7.71
WNT5B 7.52 7.80 6.29
ZAP70 6.43 5.13 5.94
TNFRSF10C 3.67 3.90 5.46
ZNF167 4.46 6.10 5.88
KIF26B 3.62 4.61 7.68
STRA6 2.26 1.08 6.57
  1. match: sample type ("tumor" or "normal") in "exp".

Table2. Identification of tumor sample and normal sample

State Identification
Normal TCGA-A6-2671-11A-01R-A32Z-07
Normal TCGA-A6-2675-11A-01R-1723-07
Tumor TCGA-A6-2675-01A-02R-1723-07
Normal TCGA-A6-2678-11A-01R-A32Z-07
Normal TCGA-A6-2679-11A-01R-A32Z-07
Normal TCGA-A6-2680-11A-01R-A32Z-07
Normal TCGA-A6-2682-11A-01R-A32Z-07
Tumor TCGA-A6-2682-01A-01R-1410-07

Table 1 is an example of "exp" and Table 2 is an example of "match".

Example "exp": gene expression profiles in cholangiocarcinoma from the genomic data commons data portal (https://portal.gdc.cancer.gov/). There are 45 samples (36 tumor and 9 normal samples) and 20,531 genes in "exp". The DEPTH function will output the heterogeneity score for each of the 36 tumor samples as shown in Table 3.

Table 3. heterogeneity score of tumor samples in output data

Samp heterogeneity score
TCGA-A6-2675-01A-02R-1723-07 2.954321
TCGA-A6-2682-01A-01R-1410-07 4.307523
TCGA-A6-2684-01A-01R-1410-07 3.916457
TCGA-A6-2685-01A-01R-1410-07 2.85864

Installation

You can install the released version of ‘DEPTH’ with:

if (!requireNamespace("devtools", quietly = TRUE))
    install.packages("devtools")
    
devtools::install_github("MLi-lab-Bioinformatics-NJUCM/DEPTH/DEPTH")

Examples

exp=read.csv("DEPTH/exp.csv",header=F)
match=read.csv("DEPTH/match.csv")

library(DEPTH)
DEPTH(exp, match)

Citation

Mengyuan Li, Zhilan Zhang, Lin Li, Xiaosheng Wang. An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles. Communications Biology 2020, 3(1), 505. DOI: https://doi.org/10.1038/s42003-020-01230-7.

About

DEPTH evaluates the tumor heterogeneity level of each tumor sample based on gene expression profiles Heterogeneity score vignette

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages