Skip to content
This repository has been archived by the owner on Aug 18, 2021. It is now read-only.

Commit

Permalink
read dicom files and write out metadata to a CSV/json
Browse files Browse the repository at this point in the history
  • Loading branch information
alistairewj committed Sep 20, 2019
1 parent bbd1e43 commit 247bb7b
Showing 1 changed file with 174 additions and 0 deletions.
174 changes: 174 additions & 0 deletions dcm/export_metadata.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
# This script sxtracts meta-data from DICOMs and place it into two files:
# (1) for sequence data, output it as a json
# (2) for tabular data, output it as a CSV (readable by pandas)
# Note that the function does *not* output values if they are longer than 100 characters.
# This avoids outputting look up tables.

import os
import argparse
import sys
import gzip
from pathlib import Path

import json
import pandas as pd
from tqdm import tqdm
import pydicom

parser = argparse.ArgumentParser(description='Extract meta-data from DICOMs')

parser.add_argument('--data', '-d',
default='./files',
help='path to DICOM format images')
parser.add_argument('--out', '-o', default='dicom-metadata.csv.gz',
help=('name out dataframe output, '
'(default: dicom-metadata.csv.gz), '
'note: this is a compressed format.'))
parser.add_argument('--json', '-j', default=None,
help=('name of the output json file, '
'(default: <output-stem>.json)'))
parser.add_argument('--number', '-n', type=int, default=None,
help=('limit the number of DICOMs to process '
' (default: None).'))


def recurse(ds):
"""
Recurses through sequences and adds them to a dictionary
Does not save elements longer than 100 elements, but
notes their existence in the final dictionary.
"""

tmp_dict = dict()
for elem in ds:
if elem.VR == 'SQ':
# do not include look up tables
if 'LUT' not in elem.name:
[recurse(item) for item in elem]
else:
e = elem.tag.group << 16 | elem.tag.element

# Save element value to a dictionary
# *unless* it is huge - these are usually images
if hasattr(elem.value, '__len__'):
if elem.value.__len__() > 100:
tmp_dict[e] = None
else:
if type(elem.value) is pydicom.multival.MultiValue:
tmp_dict[e] = list(elem.value)
else:
tmp_dict[e] = elem.value
else:
if type(elem.value) is pydicom.multival.MultiValue:
tmp_dict[e] = list(elem.value)
else:
tmp_dict[e] = elem.value
return tmp_dict


if __name__ == "__main__":
args = parser.parse_args()

base_path = Path(args.data)
out_filename = args.out
if args.json is not None:
json_filename = args.json
else:
json_filename = out_filename
if json_filename.endswith('.gz'):
json_filename = json_filename[0:-3]
if json_filename.endswith('.csv'):
json_filename = json_filename[0:-4]
json_filename += '.json'

# get list of all dicoms under the given path
files = list()
for h in os.listdir(base_path):
for pt in os.listdir(base_path / h):
for st in os.listdir(base_path / f'{h}{os.sep}{pt}'):
dcm_path = f'{base_path}{os.sep}{h}{os.sep}{pt}{os.sep}{st}'
dcms = os.listdir(dcm_path)

files.extend([f'{dcm_path}{os.sep}{d}' for d in dcms])
files.sort()

N = len(files)
print(f'Found {N} files.')
if args.number is not None:
if args.number < N:
# limit number of dicoms
print(f'Limiting parsing to {args.number} of {N} DICOMs.')
N = args.number

if N == 0:
print('No files to process. Exiting.')
sys.exit()

dicom_tabular_data = list()
with open(json_filename, 'w') as fp:
# initialize the array in the json file
fp.write('[\n')

for i in tqdm(range(N)):
if i > 0:
fp.write(',\n')
dicom_full_path = files[i]

# dicom filename is the last name in filepath
fn = dicom_full_path.split('/')[-1].split('.')[0]

# prepare the json output as a dictionary with this dicom fn as key
fp.write('{')
fp.write(f'"{fn}": ')

# load info from dicom
with open(dicom_full_path, 'rb') as dcm_fp:
plan = pydicom.dcmread(dcm_fp, stop_before_pixels=True)

field_dict = dict()
dicom_json = dict()

# go through each element
for elem in plan:
# index the dictionary using a long value of group, element
e = (elem.tag.group << 16) | elem.tag.element

# sequence data goes into JSON
if elem.VR == 'SQ':
# store number of items in the structured/flat data
field_dict[e] = elem.value.__len__()

# make a dict for the sequence, which will go into json
# don't store look up tables because
# they're huge and not human readable
if 'LUT' not in elem.name:
dicom_json[e] = [recurse(item) for item in elem]
else:
# three "real" data-types: number, string, or list of things
field_dict[e] = elem.value

field_dict['dicom'] = fn
dicom_tabular_data.append(field_dict)

# convert dictionary to json
js = json.dumps(dicom_json)

# write to json file
fp.write(js)
# finish the dicom dictionary
fp.write('}')

# end of array in json file
fp.write('\n]')

# combine list of dictionary into a dataframe
df = pd.DataFrame(dicom_tabular_data)
# make the dicom filename the index
df.set_index('dicom', inplace=True)

# write to file
if out_filename.endswith('.gz'):
df.to_csv(out_filename, sep=',', compression='gzip')
else:
df.to_csv(out_filename, sep=',')

0 comments on commit 247bb7b

Please sign in to comment.