Skip to content

Fast global mutual information-based rigid alignment in the Fourier domain

License

Notifications You must be signed in to change notification settings

MIDA-group/globalign

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

globalign

A library for fast FFT-computed global mutual information-based rigid alignment using the GPU.

Requirements: Python3.8.8, PyTorch 1.8.1, numpy, torchvision, scipy, sklearn
(CUDA-compatible GPU for GPU acceleration.)

Related to the article (if you use this code, please cite it):
Johan Öfverstedt, Joakim Lindblad, and Nataša Sladoje. Fast computation of mutual information in the frequency domain with applications to global multimodal image alignment. Pattern Recognition Letters, Vol. 159, pp. 196-203, 2022. doi:10.1016/j.patrec.2022.05.022

Preprint: https://arxiv.org/abs/2106.14699

To use the library, please see the included example script "example.py".

Main author of the code:
Johan Öfverstedt

Learn2Reg 2024 - reference sollution for the COMULISSHGBF challenge

python -m venv ./venv
. ./venv/bin/activate
pip install -r requirements.txt -r Learn2Reg/requirements.txt

#Download the Dataset for *TASK 3: COMULISglobe SHG-BF*
unzip COMULISSHGBF.zip

#Run globalign/CMIF registration using a rather coarse (fast) search
python Learn2Reg/COMULISSHGBF_2024.py

Validation displacement fields are saved to the directory output