Example client applications for NVIDIA Triton Inference Server.
Use the download_model.sh scripts in the application directories, to download the models to a server.
download_model.sh [download_path]
If not specified download_path, the model will be downloaded to ./model_repository.
These application are platform agnostic. You don't need GPU in your platform.
-
Clone this repository.
git clone https://github.com/MACNICA-CLAVIS-NV/triton-client-examples
-
Install the modules on which these applications depend.
python3 -m pip install -r requirements.txt
python3 main.py [-h] [--camera CAMERA_ID] [--width CAPTURE_WIDTH] [--height CAPTURE_HEIGHT] [--url SERVER_URL]
Triton Tiny YOLO v2 Demo
optional arguments:
-h, --help show this help message and exit
--camera CAMERA_ID Camera ID (Default: 0)
--width CAPTURE_WIDTH
Capture Width (Default: 640)
--height CAPTURE_HEIGHT
Capture Height (Default: 480)
--url SERVER_URL Triton Inference Server URL (Default: localhost:8000)
python3 main.py [-h] [--camera CAMERA_ID] [--width CAPTURE_WIDTH] [--height CAPTURE_HEIGHT] [--url SERVER_URL]
[--count CLASS_COUNT]
Triton Tiny YOLO v2 Demo
optional arguments:
-h, --help show this help message and exit
--camera CAMERA_ID Camera ID (Default: 0)
--width CAPTURE_WIDTH
Capture Width (Default: 640)
--height CAPTURE_HEIGHT
Capture Height (Default: 480)
--url SERVER_URL Triton Inference Server URL (Default: localhost:8000)
--count CLASS_COUNT Class Count to Display (Default: 3)