-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
144 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
using PeriodicGraphEquilibriumPlacement, PeriodicGraphs, LinearAlgebra, SparseArrays, | ||
BigRationals | ||
|
||
const primes = (2147483647, 2147483629, 2147483587) | ||
const modulo{P} = PeriodicGraphEquilibriumPlacement.Modulo{P, Int32} | ||
|
||
macro enforce(expr) # strong @assert | ||
msg = string(expr) | ||
return :($(esc(expr)) ? $(nothing) : throw(AssertionError($msg))) | ||
end | ||
|
||
|
||
const __bodyfunction__ = Dict{Method,Any}() | ||
|
||
# Find keyword "body functions" (the function that contains the body | ||
# as written by the developer, called after all missing keyword-arguments | ||
# have been assigned values), in a manner that doesn't depend on | ||
# gensymmed names. | ||
# `mnokw` is the method that gets called when you invoke it without | ||
# supplying any keywords. | ||
function __lookup_kwbody__(mnokw::Method) | ||
function getsym(arg) | ||
isa(arg, Symbol) && return arg | ||
@assert isa(arg, GlobalRef) | ||
return arg.name | ||
end | ||
|
||
f = get(__bodyfunction__, mnokw, nothing) | ||
if f === nothing | ||
fmod = mnokw.module | ||
# The lowered code for `mnokw` should look like | ||
# %1 = mkw(kwvalues..., #self#, args...) | ||
# return %1 | ||
# where `mkw` is the name of the "active" keyword body-function. | ||
ast = Base.uncompressed_ast(mnokw) | ||
if isa(ast, Core.CodeInfo) && length(ast.code) >= 2 | ||
callexpr = ast.code[end-1] | ||
if isa(callexpr, Expr) && callexpr.head == :call | ||
fsym = callexpr.args[1] | ||
if isa(fsym, Symbol) | ||
f = getfield(fmod, fsym) | ||
elseif isa(fsym, GlobalRef) | ||
if fsym.mod === Core && fsym.name === :_apply | ||
f = getfield(mnokw.module, getsym(callexpr.args[2])) | ||
elseif fsym.mod === Core && fsym.name === :_apply_iterate | ||
f = getfield(mnokw.module, getsym(callexpr.args[3])) | ||
else | ||
f = getfield(fsym.mod, fsym.name) | ||
end | ||
else | ||
f = missing | ||
end | ||
else | ||
f = missing | ||
end | ||
else | ||
f = missing | ||
end | ||
__bodyfunction__[mnokw] = f | ||
end | ||
return f | ||
end | ||
|
||
function _precompile_() | ||
# SparseArrays | ||
@enforce precompile(Tuple{typeof(*),SparseArrays.SparseMatrixCSC{Int, Int},Matrix{Rational{BigInt}}}) | ||
@enforce precompile(Tuple{typeof(Base.copyto_unaliased!),IndexCartesian,SubArray{Int, 1, SparseArrays.SparseMatrixCSC{Int, Int}, Tuple{Int, Base.Slice{Base.OneTo{Int}}}, false},IndexLinear,Vector{Int}}) | ||
@enforce precompile(Tuple{typeof(Base.mightalias),SubArray{Int, 1, SparseArrays.SparseMatrixCSC{Int, Int}, Tuple{Int, Base.Slice{Base.OneTo{Int}}}, false},Vector{Int}}) | ||
@enforce precompile(Tuple{typeof(LinearAlgebra.mul!),Matrix{BigInt},SparseArrays.SparseMatrixCSC{Int, Int},Matrix{BigInt},Bool,Bool}) | ||
@enforce precompile(Tuple{typeof(SparseArrays.dimlub),Vector{Int}}) | ||
@enforce precompile(Tuple{typeof(SparseArrays.findnz),SparseArrays.SparseMatrixCSC{Int, Int}}) | ||
@enforce precompile(Tuple{typeof(SparseArrays.sparse_check_length),String,Vector{Int},Int,Type}) | ||
@enforce precompile(Tuple{typeof(SparseArrays.spzeros),Type{Int},Type{Int},Int,Int}) | ||
@enforce precompile(Tuple{typeof(getindex),SparseArrays.SparseMatrixCSC{Int, Int},UnitRange{Int},UnitRange{Int}}) | ||
|
||
# Modulos.jl | ||
for P in primes | ||
@enforce precompile(Tuple{typeof(SparseArrays.sparse),Vector{Int},Vector{Int},Vector{modulo{P}},Int,Int,Function}) | ||
@enforce precompile(Tuple{typeof(SparseArrays.sparse),Vector{Int},Vector{Int},Vector{modulo{P}},Int,Int,Function}) | ||
@enforce precompile(Tuple{typeof(-),modulo{P},modulo{P}}) | ||
@enforce precompile(Tuple{typeof(/),Int,modulo{P}}) | ||
@enforce precompile(Tuple{typeof(==),Matrix{modulo{P}},Matrix{Int}}) | ||
@enforce precompile(Tuple{typeof(Base._unsafe_copyto!),Matrix{modulo{P}},Int,Matrix{Int},Int,Int}) | ||
@enforce precompile(Tuple{typeof(Base._unsafe_getindex),IndexLinear,Matrix{modulo{P}},Int,Base.Slice{Base.OneTo{Int}}}) | ||
@enforce precompile(Tuple{typeof(Base.copyto_unaliased!),IndexLinear,SubArray{modulo{P}, 1, Matrix{modulo{P}}, Tuple{Int, Base.Slice{Base.OneTo{Int}}}, true},IndexLinear,Vector{modulo{P}}}) | ||
@enforce precompile(Tuple{typeof(LinearAlgebra.mul!),Matrix{modulo{P}},SparseArrays.SparseMatrixCSC{Int, Int},Matrix{modulo{P}},Bool,Bool}) | ||
@enforce precompile(Tuple{typeof(SparseArrays._setindex_scalar!),SparseArrays.SparseMatrixCSC{modulo{P}, Int},Int,Int,Int}) | ||
@enforce precompile(Tuple{typeof(SparseArrays.sparse!),Vector{Int},Vector{Int},Vector{modulo{P}},Int,Int,typeof(+),Vector{Int},Vector{Int},Vector{Int},Vector{modulo{P}},Vector{Int},Vector{Int},Vector{modulo{P}}}) | ||
@enforce precompile(Tuple{typeof(SparseArrays.sparse),Vector{Int},Vector{Int},Vector{modulo{P}},Int,Int,Function}) | ||
@enforce precompile(Tuple{typeof(SparseArrays.sparse_check_length),String,Vector{modulo{P}},Int,Type}) | ||
@enforce precompile(Tuple{typeof(getindex),SparseArrays.SparseMatrixCSC{modulo{P}, Int},UnitRange{Int},UnitRange{Int}}) | ||
end | ||
|
||
# solver.jl | ||
for Ti in (BigRational, (modulo{P} for P in primes)...) | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.rational_lu!), SparseMatrixCSC{Ti,Int}, Vector{Int}, Bool}) | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.rational_lu!), SparseMatrixCSC{Ti,Int}, Vector{Int}}) | ||
end | ||
for P in primes | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.rational_lu), SparseMatrixCSC{modulo{P},Int}, Bool, Type{modulo{P}}}) | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.rational_lu), SparseMatrixCSC{modulo{P},Int}, Bool, Type{BigRational}}) | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.rational_lu), SparseMatrixCSC{Int,Int}, Bool}) | ||
end | ||
for Ti in (Rational{BigInt}, (modulo{P} for P in primes)...) | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.forward_substitution!), SparseMatrixCSC{Ti,Int}, Matrix{Ti}}) | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.backward_substitution!), SparseMatrixCSC{Ti,Int}, Matrix{Ti}}) | ||
end | ||
@static if VERSION < v"1.8-" | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.linsolve!), LU{Rational{BigInt},SparseMatrixCSC{Rational{BigInt},Int}}, Matrix{Rational{BigInt}}}) | ||
for P in primes | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.linsolve!), LU{modulo{P},SparseMatrixCSC{modulo{P},Int}}, Matrix{Int}}) | ||
end | ||
else | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.linsolve!), LU{Rational{BigInt},SparseMatrixCSC{Rational{BigInt},Int},Base.OneTo{Int}}, Matrix{Rational{BigInt}}}) | ||
for P in primes | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.linsolve!), LU{modulo{P},SparseMatrixCSC{modulo{P},Int},Base.OneTo{Int}}, Matrix{Int}}) | ||
end | ||
end | ||
for T in (Int64, Int128, BigInt) | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.copyuntil), Int, Matrix{Rational{T}}, Type{Rational{T}}}) | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement._inner_dixon_p!), Vector{Int}, Matrix{Rational{T}}, BigInt, Matrix{BigInt}, BigInt, BigInt}) | ||
end | ||
for N in 1:3 | ||
@enforce precompile(Tuple{typeof(rational_solve), Val{N}, SparseMatrixCSC{Int,Int}, Matrix{Int}}) | ||
for P in primes | ||
@static if VERSION < v"1.8-" | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.dixon_p), Val{N}, SparseMatrixCSC{Int,Int}, LU{modulo{P},SparseMatrixCSC{modulo{P},Int}}, Matrix{Int}}) | ||
else | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement.dixon_p), Val{N}, SparseMatrixCSC{Int,Int}, LU{modulo{P},SparseMatrixCSC{modulo{P},Int},Base.OneTo{Int}}, Matrix{Int}}) | ||
end | ||
end | ||
@enforce precompile(Tuple{typeof(dixon_solve), Val{N}, SparseMatrixCSC{Int,Int}, Matrix{Int}}) | ||
end | ||
|
||
# embeddings.jl | ||
for N in 1:3 | ||
for T in (Rational{Int64}, Rational{Int128}, Rational{BigInt}) | ||
@enforce precompile(Tuple{typeof(PeriodicGraphEquilibriumPlacement._catzeros), Val{N}, Adjoint{T,Matrix{T}}}) | ||
end | ||
@enforce precompile(Tuple{typeof(equilibrium), PeriodicGraph{N}}) | ||
end | ||
end | ||
|
||
_precompile_() |