-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.Rmd
executable file
·148 lines (125 loc) · 5.36 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
title: SPEAQeasy Example Analysis
author:
- name: Nicholas J. Eagles
affiliation:
- &libd Lieber Institute for Brain Development, Johns Hopkins Medical Campus
- name: Leonardo Collado-Torres
affiliation:
- *libd
- &ccb Center for Computational Biology, Johns Hopkins University
email: [email protected]
output:
BiocStyle::html_document:
toc: true
toc_float: true
toc_depth: 2
code_folding: show
---
# Analysis
A guided example showing how processed results from the RNAseq pipeline [SPEAQeasy](https://github.com/LieberInstitute/SPEAQeasy) can be used in differential expression analyses and visualization. We also show how existing genotype information for a set of samples can be combined with SPEAQeasy results to resolve any identity issues, as can emerge during sequencing.
* [Downloading the example data](prepare_data.html)
* [Run SPEAQeasy on your setup](run_speaqeasy.html)
* [Resolve identity issues and attach phenotype data](swap_speaqeasy.html)
* [Perform differential expression and visualize results](de_analysis_speaqeasy.html)
# Cite `SPEAQeasy`
We hope that [`SPEAQeasy`](http://research.libd.org/SPEAQeasy/) will be useful for your research. Please use the following information to cite the package and the overall approach. Thank you!
```
@article {Eagles2021,
author = {Eagles, Nicholas J. and Burke, Emily E. and Leonard, Jacob and Barry, Brianna K. and Stolz, Joshua M. and Huuki, Louise and Phan, BaDoi N. and Larrios Serrato, Violeta and Guti{\'e}rrez-Mill{\'a}n, Everardo and Aguilar-Ordo{\~n}ez, Israel and Jaffe, Andrew E. and Collado-Torres, Leonardo},
title = {SPEAQeasy: a scalable pipeline for expression analysis and quantification for R/bioconductor-powered RNA-seq analyses},
year = {2021},
doi = {10.1186/s12859-021-04142-3},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://doi.org/10.1186/s12859-021-04142-3},
journal = {BMC Bioinformatics}
}
```
This is a project by the [R/Bioconductor-powered Team Data Science](https://lcolladotor.github.io/bioc_team_ds) at the [Lieber Institute for Brain Development](https://www.libd.org/).
| | |
|-----|-----|
| <a href="https://lcolladotor.github.io/bioc_team_ds"><img src="https://lcolladotor.github.io/bioc_team_ds/icon_192.png" width="250px"></a> | <a href="https://www.libd.org/"><img src="http://lcolladotor.github.io/img/LIBD_logo.jpg" width="250px"></a> |
# References
```{r 'setup', echo = FALSE, warning = FALSE, message = FALSE}
## Bib setup
timestart = Sys.time()
library("knitcitations")
library("BiocStyle")
library("devtools")
## Load knitcitations with a clean bibliography
cleanbib()
cite_options(
hyperlink = "to.doc",
citation_format = "text",
style = "html"
)
## Write bibliography information
bibs <- c(
R = citation(),
biocStyle = citation("BiocStyle"),
devtools = citation("devtools"),
clusterProfiler = citation("clusterProfiler"),
edgeR = citation("edgeR")[1],
getopt = citation("getopt"),
here = citation("here"),
jaffelab = citation("jaffelab"),
knitcitations = citation("knitcitations"),
limma = citation("limma"),
org.Hs.eg.db = citation("org.Hs.eg.db"),
pheatmap = citation("pheatmap"),
RColorBrewer = citation("RColorBrewer"),
recount = citation("recount")[1],
rmarkdown = citation("rmarkdown")[1],
SummarizedExperiment = citation("SummarizedExperiment"),
tidyr = citation("tidyr"),
VariantAnnotation = citation("VariantAnnotation"),
voom = RefManageR::BibEntry(
"article",
key = "voom",
author = "CW Law and Y Chen and W Shi and GK Smyth",
year = "2014",
title = "Voom: precision weights unlock linear model analysis tools for RNA-seq read counts",
journal = "Genome Biology",
volume = "15",
pages = "R29"
)
)
write.bibtex(bibs, file = "index.bib")
bib <- read.bibtex("index.bib")
## Assign short names
names(bib) <- names(bibs)
```
The analysis was possible thanks to R and many of its packages:
* R `r citep(bib[['R']])`
* `r Biocpkg('BiocStyle')` `r citep(bib[['biocStyle']])`
* `r Biocpkg('clusterProfiler')` `r citep(bib[['clusterProfiler']])`
* `r CRANpkg('devtools')` `r citep(bib[['devtools']])`
* `r Biocpkg('edgeR')` `r citep(bib[['edgeR']])`
* `r CRANpkg('getopt')` `r citep(bib[['getopt']])`
* `r CRANpkg('here')` `r citep(bib[['here']])`
* `r Biocpkg('limma')` `r citep(bib[['limma']])`
* `r CRANpkg('jaffelab')` `r citep(bib[['jaffelab']])`
* `r CRANpkg('knitcitations')` `r citep(bib[['knitcitations']])`
* `r Biocpkg('org.Hs.eg.db')` `r citep(bib[['org.Hs.eg.db']])`
* `r CRANpkg('pheatmap')` `r citep(bib[['pheatmap']])`
* `r CRANpkg('RColorBrewer')` `r citep(bib[['RColorBrewer']])`
* `r Biocpkg('recount')` `r citep(bib[['recount']])`
* `r CRANpkg('rmarkdown')` `r citep(bib[['rmarkdown']])`
* `r Biocpkg('SummarizedExperiment')` `r citep(bib[['SummarizedExperiment']])`
* `r CRANpkg('tidyr')` `r citep(bib[['tidyr']])`
* `r Biocpkg('VariantAnnotation')` `r citep(bib[['VariantAnnotation']])`
* `r Biocpkg('voom')` `r citep(bib[['voom']])`
[Bibliography file](index.bib)
```{r bibliography, results='asis', echo=FALSE, warning = FALSE}
# Print bibliography
bibliography()
```
```{r reproducibility}
# Time spent creating this report:
diff(c(timestart, Sys.time()))
# Date this report was generated
message(Sys.time())
# Reproducibility info
options(width = 120)
sessioninfo::session_info()
```