Skip to content

LeileiCao/ProtoFormer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prototype as Query for Few-Shot Semantic Segmentation

This is the implementation of the paper "Prototype as Query for Few-Shot Semantic Segmentation" by Leilei Cao, Yibo Guo, Ye Yuan and Qiangguo Jin. Implemented on Python 3.8 and Pytorch 1.8.1.

For more information, check out our paper on [[arXiv](https://arxiv.org/abs/2211.14764)].

Requirements

  • Python 3.8
  • PyTorch 1.8.1
  • cuda 11.1
  • tensorboard 2.6.0

Conda environment settings:

conda create -n protoformer python=3.8
conda activate protoformer

conda install pytorch=1.8.1 torchvision cudatoolkit=11.1 -c pytorch
conda install -c conda-forge tensorflow
pip install tensorboardX

Preparing Few-Shot Segmentation Datasets

Download following datasets:

1. PASCAL-5i

Download PASCAL VOC2012 devkit (train/val data):

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

Download PASCAL VOC2012 SDS extended mask annotations from this [Google Drive].

2. COCO-20i

Download COCO2014 train/val images and annotations:

wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip

Download COCO2014 train/val annotations from our Google Drive: [train2014.zip], [val2014.zip]. (and locate both train2014/ and val2014/ under annotations/ directory).

Create a directory '../Datasets' for the above two few-shot segmentation datasets and appropriately place each dataset to have following directory structure:

../                         # parent directory
├── ./                      # current (project) directory
│   ├── common/             # (dir.) helper functions
│   ├── data/               # (dir.) dataloaders and splits for each FSSS dataset
│   ├── model/              # (dir.) implementation of ProtoFormer model 
│   ├── README.md           # intstruction for reproduction
│   ├── train.py            # code for training HSNet
│   └── test.py             # code for testing HSNet
└── Datasets/
    ├── VOC2012/            # PASCAL VOC2012 devkit
    │   ├── Annotations/
    │   ├── ImageSets/
    │   ├── ...
    │   └── SegmentationClassAug/
    ├── COCO2014/           
        ├── annotations/
        │   ├── train2014/  # (dir.) training masks (from Google Drive) 
        │   ├── val2014/    # (dir.) validation masks (from Google Drive)
        │   └── ..some json files..
        ├── train2014/
        └── val2014/

Download the ImageNet pretrained backbones and put them into the initmodel directory

Training

1. PASCAL-5i

python train.py --layers {50, 101} 
                --fold {0, 1, 2, 3} 
                --benchmark pascal
                --lr 1e-3
                --bsz 32
                --niter 60
                --shot 1
                --logpath "your_experiment_name"

2. COCO-20i

python train.py --layers {50, 101} 
                --fold {0, 1, 2, 3} 
                --benchmark coco 
                --lr 1e-3
                --bsz 32
                --niter 30
                --shot {1, 5}
                --logpath "your_experiment_name"

Babysitting training:

Use tensorboard to babysit training progress:

  • For each experiment, a directory that logs training progress will be automatically generated under logs/ directory.
  • From terminal, run 'tensorboard --logdir logs/' to monitor the training progress.
  • Choose the best model when the validation (mIoU) curve starts to saturate.

Testing

1. PASCAL-5i

Pretrained models are available on our [Google Drive].

python test.py --layers {50, 101} 
               --fold {0, 1, 2, 3} 
               --benchmark pascal
               --nshot {1, 5} 
               --load "path_to_trained_model"

2. COCO-20i

Pretrained models are available on our [Google Drive].

python test.py --layers {50, 101}
               --fold {0, 1, 2, 3} 
               --benchmark coco 
               --nshot {1, 5} 
               --load "path_to_trained_model"

This project is built upon HSNet:https://github.com/juhongm999/hsnet

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages