-
Notifications
You must be signed in to change notification settings - Fork 415
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
237 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# Network in Network CIFAR10 Model | ||
# Original source: https://gist.github.com/mavenlin/e56253735ef32c3c296d | ||
# License: unknown | ||
|
||
# Download pretrained weights from: | ||
# https://s3.amazonaws.com/lasagne/recipes/pretrained/cifar10/model.pkl | ||
|
||
from lasagne.layers import InputLayer, DropoutLayer, FlattenLayer | ||
from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer | ||
from lasagne.layers import Pool2DLayer as PoolLayer | ||
|
||
|
||
def build_model(): | ||
net = {} | ||
net['input'] = InputLayer((None, 3, 32, 32)) | ||
net['conv1'] = ConvLayer(net['input'], | ||
num_filters=192, | ||
filter_size=5, | ||
pad=2) | ||
net['cccp1'] = ConvLayer(net['conv1'], num_filters=160, filter_size=1) | ||
net['cccp2'] = ConvLayer(net['cccp1'], num_filters=96, filter_size=1) | ||
net['pool1'] = PoolLayer(net['cccp2'], | ||
pool_size=3, | ||
stride=2, | ||
mode='max', | ||
ignore_border=False) | ||
net['drop3'] = DropoutLayer(net['pool1'], p=0.5) | ||
net['conv2'] = ConvLayer(net['drop3'], | ||
num_filters=192, | ||
filter_size=5, | ||
pad=2) | ||
net['cccp3'] = ConvLayer(net['conv2'], num_filters=192, filter_size=1) | ||
net['cccp4'] = ConvLayer(net['cccp3'], num_filters=192, filter_size=1) | ||
net['pool2'] = PoolLayer(net['cccp4'], | ||
pool_size=3, | ||
stride=2, | ||
mode='average_exc_pad', | ||
ignore_border=False) | ||
net['drop6'] = DropoutLayer(net['pool2'], p=0.5) | ||
net['conv3'] = ConvLayer(net['drop6'], | ||
num_filters=192, | ||
filter_size=3, | ||
pad=1) | ||
net['cccp5'] = ConvLayer(net['conv3'], num_filters=192, filter_size=1) | ||
net['cccp6'] = ConvLayer(net['cccp5'], num_filters=10, filter_size=1) | ||
net['pool3'] = PoolLayer(net['cccp6'], | ||
pool_size=8, | ||
mode='average_exc_pad', | ||
ignore_border=False) | ||
net['output'] = FlattenLayer(net['pool3']) | ||
|
||
return net |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
# BLVC Googlenet, model from the paper: | ||
# "Going Deeper with Convolutions" | ||
# Original source: | ||
# https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet | ||
# License: unrestricted use | ||
|
||
# Download pretrained weights from: | ||
# https://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/blvc_googlenet.pkl | ||
|
||
from lasagne.layers import InputLayer | ||
from lasagne.layers import DenseLayer | ||
from lasagne.layers import ConcatLayer | ||
from lasagne.layers import NonlinearityLayer | ||
from lasagne.layers import GlobalPoolLayer | ||
from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer | ||
from lasagne.layers.dnn import MaxPool2DDNNLayer as PoolLayerDNN | ||
from lasagne.layers import MaxPool2DLayer as PoolLayer | ||
from lasagne.layers import LocalResponseNormalization2DLayer as LRNLayer | ||
from lasagne.nonlinearities import softmax, linear | ||
|
||
|
||
def build_inception_module(name, input_layer, nfilters): | ||
# nfilters: (pool_proj, 1x1, 3x3_reduce, 3x3, 5x5_reduce, 5x5) | ||
net = {} | ||
net['pool'] = PoolLayerDNN(input_layer, pool_size=3, stride=1, pad=1) | ||
net['pool_proj'] = ConvLayer(net['pool'], nfilters[0], 1) | ||
|
||
net['1x1'] = ConvLayer(input_layer, nfilters[1], 1) | ||
|
||
net['3x3_reduce'] = ConvLayer(input_layer, nfilters[2], 1) | ||
net['3x3'] = ConvLayer(net['3x3_reduce'], nfilters[3], 3, pad=1) | ||
|
||
net['5x5_reduce'] = ConvLayer(input_layer, nfilters[4], 1) | ||
net['5x5'] = ConvLayer(net['5x5_reduce'], nfilters[5], 5, pad=2) | ||
|
||
net['output'] = ConcatLayer([ | ||
net['1x1'], | ||
net['3x3'], | ||
net['5x5'], | ||
net['pool_proj'], | ||
]) | ||
|
||
return {'{}/{}'.format(name, k): v for k, v in net.items()} | ||
|
||
|
||
def build_model(): | ||
net = {} | ||
net['input'] = InputLayer((None, 3, None, None)) | ||
net['conv1/7x7_s2'] = ConvLayer(net['input'], 64, 7, stride=2, pad=3) | ||
net['pool1/3x3_s2'] = PoolLayer(net['conv1/7x7_s2'], | ||
pool_size=3, | ||
stride=2, | ||
ignore_border=False) | ||
net['pool1/norm1'] = LRNLayer(net['pool1/3x3_s2'], alpha=0.00002, k=1) | ||
net['conv2/3x3_reduce'] = ConvLayer(net['pool1/norm1'], 64, 1) | ||
net['conv2/3x3'] = ConvLayer(net['conv2/3x3_reduce'], 192, 3, pad=1) | ||
net['conv2/norm2'] = LRNLayer(net['conv2/3x3'], alpha=0.00002, k=1) | ||
net['pool2/3x3_s2'] = PoolLayer(net['conv2/norm2'], pool_size=3, stride=2) | ||
|
||
net.update(build_inception_module('inception_3a', | ||
net['pool2/3x3_s2'], | ||
[32, 64, 96, 128, 16, 32])) | ||
net.update(build_inception_module('inception_3b', | ||
net['inception_3a/output'], | ||
[64, 128, 128, 192, 32, 96])) | ||
net['pool3/3x3_s2'] = PoolLayer(net['inception_3b/output'], | ||
pool_size=3, stride=2) | ||
|
||
net.update(build_inception_module('inception_4a', | ||
net['pool3/3x3_s2'], | ||
[64, 192, 96, 208, 16, 48])) | ||
net.update(build_inception_module('inception_4b', | ||
net['inception_4a/output'], | ||
[64, 160, 112, 224, 24, 64])) | ||
net.update(build_inception_module('inception_4c', | ||
net['inception_4b/output'], | ||
[64, 128, 128, 256, 24, 64])) | ||
net.update(build_inception_module('inception_4d', | ||
net['inception_4c/output'], | ||
[64, 112, 144, 288, 32, 64])) | ||
net.update(build_inception_module('inception_4e', | ||
net['inception_4d/output'], | ||
[128, 256, 160, 320, 32, 128])) | ||
net['pool4/3x3_s2'] = PoolLayer(net['inception_4e/output'], | ||
pool_size=3, stride=2) | ||
|
||
net.update(build_inception_module('inception_5a', | ||
net['pool4/3x3_s2'], | ||
[128, 256, 160, 320, 32, 128])) | ||
net.update(build_inception_module('inception_5b', | ||
net['inception_5a/output'], | ||
[128, 384, 192, 384, 48, 128])) | ||
|
||
net['pool5/7x7_s1'] = GlobalPoolLayer(net['inception_5b/output']) | ||
net['loss3/classifier'] = DenseLayer(net['pool5/7x7_s1'], | ||
num_units=1000, | ||
nonlinearity=linear) | ||
net['prob'] = NonlinearityLayer(net['loss3/classifier'], | ||
nonlinearity=softmax) | ||
return net |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
# VGG-16, 16-layer model from the paper: | ||
# "Very Deep Convolutional Networks for Large-Scale Image Recognition" | ||
# Original source: https://gist.github.com/ksimonyan/211839e770f7b538e2d8 | ||
# License: non-commercial use only | ||
|
||
# Download pretrained weights from: | ||
# https://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/vgg16.pkl | ||
|
||
from lasagne.layers import InputLayer, DenseLayer, NonlinearityLayer | ||
from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer | ||
from lasagne.layers import Pool2DLayer as PoolLayer | ||
from lasagne.nonlinearities import softmax | ||
|
||
|
||
def build_model(): | ||
net = {} | ||
net['input'] = InputLayer((None, 3, 224, 224)) | ||
net['conv1_1'] = ConvLayer(net['input'], 64, 3, pad=1) | ||
net['conv1_2'] = ConvLayer(net['conv1_1'], 64, 3, pad=1) | ||
net['pool1'] = PoolLayer(net['conv1_2'], 2) | ||
net['conv2_1'] = ConvLayer(net['pool1'], 128, 3, pad=1) | ||
net['conv2_2'] = ConvLayer(net['conv2_1'], 128, 3, pad=1) | ||
net['pool2'] = PoolLayer(net['conv2_2'], 2) | ||
net['conv3_1'] = ConvLayer(net['pool2'], 256, 3, pad=1) | ||
net['conv3_2'] = ConvLayer(net['conv3_1'], 256, 3, pad=1) | ||
net['conv3_3'] = ConvLayer(net['conv3_2'], 256, 3, pad=1) | ||
net['pool3'] = PoolLayer(net['conv3_3'], 2) | ||
net['conv4_1'] = ConvLayer(net['pool3'], 512, 3, pad=1) | ||
net['conv4_2'] = ConvLayer(net['conv4_1'], 512, 3, pad=1) | ||
net['conv4_3'] = ConvLayer(net['conv4_2'], 512, 3, pad=1) | ||
net['pool4'] = PoolLayer(net['conv4_3'], 2) | ||
net['conv5_1'] = ConvLayer(net['pool4'], 512, 3, pad=1) | ||
net['conv5_2'] = ConvLayer(net['conv5_1'], 512, 3, pad=1) | ||
net['conv5_3'] = ConvLayer(net['conv5_2'], 512, 3, pad=1) | ||
net['pool5'] = PoolLayer(net['conv5_3'], 2) | ||
net['fc6'] = DenseLayer(net['pool5'], num_units=4096) | ||
net['fc7'] = DenseLayer(net['fc6'], num_units=4096) | ||
net['fc8'] = DenseLayer(net['fc7'], num_units=1000, nonlinearity=None) | ||
net['prob'] = NonlinearityLayer(net['fc8'], softmax) | ||
|
||
return net |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
# VGG-19, 19-layer model from the paper: | ||
# "Very Deep Convolutional Networks for Large-Scale Image Recognition" | ||
# Original source: https://gist.github.com/ksimonyan/3785162f95cd2d5fee77 | ||
# License: non-commercial use only | ||
|
||
# Download pretrained weights from: | ||
# https://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/vgg19.pkl | ||
|
||
from lasagne.layers import InputLayer, DenseLayer, NonlinearityLayer | ||
from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer | ||
from lasagne.layers import Pool2DLayer as PoolLayer | ||
from lasagne.nonlinearities import softmax | ||
|
||
|
||
def build_model(): | ||
net = {} | ||
net['input'] = InputLayer((None, 3, 224, 224)) | ||
net['conv1_1'] = ConvLayer(net['input'], 64, 3, pad=1) | ||
net['conv1_2'] = ConvLayer(net['conv1_1'], 64, 3, pad=1) | ||
net['pool1'] = PoolLayer(net['conv1_2'], 2) | ||
net['conv2_1'] = ConvLayer(net['pool1'], 128, 3, pad=1) | ||
net['conv2_2'] = ConvLayer(net['conv2_1'], 128, 3, pad=1) | ||
net['pool2'] = PoolLayer(net['conv2_2'], 2) | ||
net['conv3_1'] = ConvLayer(net['pool2'], 256, 3, pad=1) | ||
net['conv3_2'] = ConvLayer(net['conv3_1'], 256, 3, pad=1) | ||
net['conv3_3'] = ConvLayer(net['conv3_2'], 256, 3, pad=1) | ||
net['conv3_4'] = ConvLayer(net['conv3_3'], 256, 3, pad=1) | ||
net['pool3'] = PoolLayer(net['conv3_4'], 2) | ||
net['conv4_1'] = ConvLayer(net['pool3'], 512, 3, pad=1) | ||
net['conv4_2'] = ConvLayer(net['conv4_1'], 512, 3, pad=1) | ||
net['conv4_3'] = ConvLayer(net['conv4_2'], 512, 3, pad=1) | ||
net['conv4_4'] = ConvLayer(net['conv4_3'], 512, 3, pad=1) | ||
net['pool4'] = PoolLayer(net['conv4_4'], 2) | ||
net['conv5_1'] = ConvLayer(net['pool4'], 512, 3, pad=1) | ||
net['conv5_2'] = ConvLayer(net['conv5_1'], 512, 3, pad=1) | ||
net['conv5_3'] = ConvLayer(net['conv5_2'], 512, 3, pad=1) | ||
net['conv5_4'] = ConvLayer(net['conv5_3'], 512, 3, pad=1) | ||
net['pool5'] = PoolLayer(net['conv5_4'], 2) | ||
net['fc6'] = DenseLayer(net['pool5'], num_units=4096) | ||
net['fc7'] = DenseLayer(net['fc6'], num_units=4096) | ||
net['fc8'] = DenseLayer(net['fc7'], num_units=1000, nonlinearity=None) | ||
net['prob'] = NonlinearityLayer(net['fc8'], softmax) | ||
|
||
return net |