Kenta Tanaka, Eiji Watanabe, Lana Sinapayen 2020
This code is the chainer implementation of PredNet Lotter, William, Gabriel Kreiman, and David Cox. "Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning." arXiv preprint arXiv:1605.08104 (2016)."
The network learns a still image sequence generated from a video by a deep learning algorithm, and generates predicted frames.
Open running_chainer.ipynb
in Colab (from the github repo: click on running_chainer.ipynb
, github will show a an "open in colab" button.)
Upload video frames by drag-and-drop in your codlab instance.
The code has been tested and runs on following setups:
OS: Ubuntu 16.04
Python: 2.7
GPU: Nvidia GTX1080ti
chainer==5.30
Codalab Python 3 + GPU
OS: Ubuntu 16.04.5LTS Python: 2.7.12 GPU: Nvidia GTX1080ti chainer==6.7.0
tensorboard-chainer
opencv
pillow
matplotlib
scipy
python-opencv
setuptools
numpy
cupy
net
cv2
setuptools
tensorboard-chainer
GPU driver, CUDA Toolkit and cudnn
Put the target movie file (mp4) in "data" folder. Execute the following command to generate still images from the movie.
python utilities/extract_frames.py path/to/mp4/video -d input_images
To change the width of the image, use the -w option.
python generate_image.py data/YOUR_VIDEO -d data -w 160
The height can also be specified with -g option.
python generate_image.py data/YOUR_VIDEO -d data -w 160 -g 120
If no option is specified, the width is fixed to 160 and the height is fixed to 120.
List files "train_list.txt" and "test_list.txt" describing the list of files used for training and testing are saved. By default, the latter half of the video will be the test data.
see running_chainer.ipynb
.
Example with test images, using this model trained on FPSI dataset. Output 10 predicitons of the rotating snake illusion on gpu
python chainer_prednet/PredNet/call_prednet.py --images input_images --initmodel fpsi_500000_20v.model --input_len 10 --test --g 0
Example of training on your own data:
chainer_prednet/PredNet/call_prednet.py --images input_images --g 0 --save 10000 --period 1000000
This will train the network on your specified input for 1000000 steps and save [step].model
files.
The optical flow module allows you to visualise predicted motion.
For example to detect visual illusions, perform extended prediction on a static input image and take the optical flow between two extended predictions or even between a regular prediction and an extended prediction.
See running_prednet.ipynb
for how to run the following example: a. Rotating Snakes illusion as input image, b. extended prediction, c. optical flow (magnified 60x)
https://github.com/neka-nat/ by Tanaka
https://coxlab.github.io/prednet/ Original PredNet
https://github.com/quadjr/PredNet Implemented by chainer