Skip to content
/ iAnchor Public

High precision anchor black box explanation algorithm

License

Notifications You must be signed in to change notification settings

LUH-AI/iAnchor

Repository files navigation


About The Project

An interpretable and easy-to-understand python version of the Anchor explanation method from Anchors: High-Precision Model-Agnostic Explanations. Our implementation is inspired by this code. Furthermore, it supports optimization with the SMAC optimizer besides KL-divergence. The code is unit tested and the tests can be run with pytest.

Getting Started

This section describes how to get started explaining your own black-box models.

Prerequisites

To install the required packages we recommend using Conda. Our used environment can be easily installed with conda.

Installation

  1. Install conda environment
    conda create -n iAnchor python=3.9
  2. Activate the environment
    conda activate iAnchor
  3. Install from pypi
    pip install ianchor

If you want to use iAnchor for images or texts install its dependencies too:

pip install ianchor[text]
pip install ianchor[image]

Tests

  1. Go to the project directory and run
    pytest tests/*

Usage

We provided an example jupyter notebook for different use cases. You can find the notebooks here. The notebooks cover the following use cases:

  • Explanation of image prediction
  • Explanation of tabular prediction
  • Explanation of text prediction

Example

Suppose you want to explain a tabular instance prediction. You can get an explanation with a few lines of code.

import numpy as np
import sklearn
from Anchor.anchor import Anchor, Tasktype

# Load dataset
data = np.genfromtxt('../datasets/titanic.txt', delimiter=',')
y_train = data[:, -1]
X_train = data[:, :-1]

# Train classifier
c = sklearn.ensemble.RandomForestClassifier(n_estimators=100, n_jobs=5, random_state=123)
c.fit(X_train, y_train)
print('Train', sklearn.metrics.accuracy_score(y_train, c.predict(X_train)))

# Init explainer for specific task
explainer = Anchor(Tasktype.TABULAR)

# Get explanation for desired instance
task_paras = {"dataset": X_train, "column_names": ["PcClass", "Name", "Sex", "Age", "SibSp", "Parch", "Ticket", "Fare", "Cabin", "Embarked"]}
method_paras = {"beam_size": 1, "desired_confidence": 1.0}
anchor = explainer.explain_instance(
    input=X_train[759].reshape(1, -1),
    predict_fn=c.predict,
    method="beam",
    task_specific=task_paras,
    method_specific=method_paras,
    num_coverage_samples=100,
)

# Visualize explanation
visu = explainer.visualize(anchor, X_train[759])
print(visu)

For more advanced usage and architecture insights you can look at the docs.

Contact

  1. Kevin Schumann - [email protected]
  2. Paul Heinemeyer - [email protected]

Acknowledgments

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •