Skip to content

[CVPR 2024] Joint-Task Regularization for Partially Labeled Multi-Task Learning

License

Notifications You must be signed in to change notification settings

KentoNishi/JTR-CVPR-2024

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[CVPR 2024] Joint-Task Regularization for Partially Labeled Multi-Task Learning

Updates

  • June 2024: Code released for Cityscapes onelabel.
  • May 2024: Code released for NYUv2 onelabel and randomlabels.
  • May 2024: Website updated with the CVPR poster and video.
  • April 2024: Paper website published at kentonishi.com/JTR-CVPR-2024.

Usage

Setup

First, download the dataset following the instructions in the MTPSL repository.

Training JTR

Code for training JTR is stored in the ./code directory. Some example commands are provided below:

cd code

# NYUv2 onelabel
python train_nyuv2.py \
  --data-dir [/some/data/dir] \
  --out-dir [/some/output/dir/nyuv2_onelabel] \
  --ssl-type onelabel \
  --label-dir ./data/nyuv2_settings \
  --seg-baseline 25.75 --depth-baseline 0.6511 --norm-baseline 33.73

# NYUv2 randomlabels
python train_nyuv2.py \
  --data-dir [/some/data/dir] \
  --out-dir [/some/output/dir/nyuv2_randomlabels] \
  --ssl-type randomlabels \
  --label-dir ./data/nyuv2_settings \
  --seg-baseline 27.05 --depth-baseline 0.6626 --norm-baseline 33.58

# Cityscapes onelabel
python train_cityscapes.py \
  --data-dir [/some/data/dir] \
  --out-dir [/some/output/dir/cityscapes_onelabel] \
  --label-dir ./data/cityscapes_settings \
  --seg-baseline 69.50 --depth-baseline 0.0186

Patching MTPSL

For convenience, we provide a git patch (./code/patches/mtpsl.patch) to modify the MTPSL training code with our dataloader parameters. You can apply the patch as follows:

git clone [email protected]:VICO-UoE/MTPSL.git
cd MTPSL
git apply /path/to/mtpsl.patch

After applying the patch, you can simply run the commands in the MTPSL repository's README.

Contact

If you have any questions, please contact Kento Nishi and Junsik Kim at [email protected] and [email protected].

Citation

If you find this code useful, please consider citing our paper:

@misc{nishi2024jointtask,
    title={Joint-Task Regularization for Partially Labeled Multi-Task Learning}, 
    author={Kento Nishi and Junsik Kim and Wanhua Li and Hanspeter Pfister},
    year={2024},
    eprint={2404.01976},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

About

[CVPR 2024] Joint-Task Regularization for Partially Labeled Multi-Task Learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published