Skip to content

Commit

Permalink
initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
KaziAmitHasan committed Aug 19, 2021
1 parent 08ed612 commit e77d2e0
Show file tree
Hide file tree
Showing 9 changed files with 328 additions and 23 deletions.
4 changes: 4 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,10 @@ bin-release/

# Other files and folders
.settings/
.build/
.dist/
.data_inspector.egg-info/


# Executables
*.swf
Expand Down
26 changes: 26 additions & 0 deletions CHANGELOG.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
Change Log
==========

0.0.1 (20/08/2021)
------------------
- First Release

0.0.2 (20/08/2021)
------------------
- Minor updates

0.0.3 (20/08/2021)
------------------
- Minor updates

0.0.4 (20/08/2021)
------------------
- Minor updates

0.0.5 (20/08/2021)
------------------
- Minor updates

0.0.6 (20/08/2021)
------------------
- Minor updates
7 changes: 7 additions & 0 deletions LICENCE.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
Copyright 2021 Kazi Amit Hasan

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21 changes: 0 additions & 21 deletions LICENSE

This file was deleted.

1 change: 1 addition & 0 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
global-include *.txt *.py
41 changes: 39 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,2 +1,39 @@
# data-inspector
This module brings different functions to make EDA, data cleaning easier.
# Data Inspector
## This module brings different functions to make EDA, data cleaning easier.
### Author: Kazi Amit Hasan

## Project Description:

Data Inspector brings a total of 15 essential exploratory data analysis, data cleaning automations to make a dataset understandable. This is a perfect tool to get started with you data.

data inspector helps to make
## Installation

```pip install data-inspector```

Package available at https://pypi.org/project/data-inspector/


### Available automation:


1. Line plot : ```line_plot(data, x_data, y_data, x_label="", y_label="", title="")```
2. Skew feature: ```plot_skewed_feature(data, column)```
3. Showing data distribution: ```show_distribution(data, column)```
4. Scatter plot: ```plot_scatter(data,x_data, y_data)```
5. Correlation plot: ```plot_correlation(data)```
6. Create histogram: ```histogram(data,column, x_label, y_label, title)```
7. Create bar plot: ```plot_bar(data, column, xlabel, ylabel, title)```
8. Create boxplots of all features: ```box_plot(data)```
9. Checking dataset's shape: ```datasetShape(data)```
10. Get dataset's diagnostic plots: ```diagnostic_plots(data, variable)```
11. Divide numerical and categorical features: ```divideFeatures(data)```
12. Fill NaN values: ```fillNan(data, column, value)```
13. Get pearson's correlation between two variables: ```get_correlation(column_1, column_2, data)```
14. Plotting kde plots:``` plot_cont_kde(data, var)```
15. Automatic calculating the missing values and their percentage along with visualization : ```calculating_missing_values(data)```





1 change: 1 addition & 0 deletions data_inspector/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from data_inspector.data_inspector import *
228 changes: 228 additions & 0 deletions data_inspector/data_inspector.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import numpy as np
import pandas as pd
from scipy.stats import pearsonr
from scipy import stats

warnings.filterwarnings("ignore")

"""
NAME
data_inspector
DESCRIPTION
This module brings different functions to make EDA, data cleaning easier.
MODULE CONTENTS
1. line_plot
2. plot_skewed_feature
3. show_distribution
4. plot_scatter
5. plot_correlation
6. get_correlation (pearson)
7. histogram
8. plot_bar
9. box_plot
10. datasetShape
11. diagnostic_plots
12. divideFeatures
13. fillNan
14. plot_cont_kde
15. calculating_missing_values
"""


# fucntion to plot line_plot
# Reference: https://notebook.community/mzohaib10/datascience-starters/visualization-in-matplotlib/visualization-in-matplotlib

def line_plot(data, x_data, y_data, x_label="", y_label="", title=""):
# Create the plot object
_, ax = plt.subplots()

# Plot the best fit line, set the linewidth (lw), color and
# transparency (alpha) of the line
ax.plot(data[x_data], data[y_data], lw = 2, color = '#539caf', alpha = 1)

# Label the axes and provide a title
ax.set_title(title)
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)



# fucntion to plot sample skewed feature
# Refernce:

def plot_skewed_feature(data, column):
plt.figure(figsize=(10,4))
sns.distplot(data[column])
plt.show()


# fucntion to show data distributions

def show_distribution(data, column):

fig, ax = plt.subplots(figsize=(10,5))
sns.histplot(data, x=column, kde=True, ax=ax)
plt.show()


# fucntion to show scatter plots
# Reference: https://notebook.community/mzohaib10/datascience-starters/visualization-in-matplotlib/visualization-in-matplotlib

def plot_scatter(data,x_data, y_data):

plt.figure(figsize=(15,5))
plt.scatter(data[x_data], data[y_data], color='r')
plt.title(f'{x_data} vs {y_data}', fontsize=15, fontweight='bold')
plt.xlabel(f'{x_data}', fontsize=15, fontweight='bold')
plt.ylabel(f'{y_data}', fontsize=15, fontweight='bold')
plt.grid()


# fucntion to show correlations
# Reference: https://seaborn.pydata.org/examples/many_pairwise_correlations.html

def plot_correlation(data):
corr = data.corr()
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
sns.heatmap(corr, mask = mask, annot=True)
plt.show()

# fucntion to get pearson correlations and P value
# Reference: https://github.com/PacktPublishing/Hands-on-Exploratory-Data-Analysis-with-Python/blob/master/Chapter%2011/Chapter11.ipynb

def get_correlation(column_1, column_2, data):
pearson_corr, p_value = pearsonr(data[column_1], data[column_2])
print("Correlation between {} and {} is {}".format(column_1, column_2, pearson_corr))
print("P-value of this correlation is {}".format(p_value))


# fucntion to show histogram
# Reference: https://notebook.community/mzohaib10/datascience-starters/visualization-in-matplotlib/visualization-in-matplotlib

def histogram(data,column, x_label, y_label, title):
_, ax = plt.subplots()
ax.hist(data[column], color = '#539caf')
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)

# fucntion to plot bar
# Reference: https://notebook.community/mzohaib10/datascience-starters/visualization-in-matplotlib/visualization-in-matplotlib

def plot_bar(data, column, xlabel, ylabel, title):

ax = data[column].value_counts().sort_values().plot(kind='bar',figsize=(10,5), grid=True)
ax.set(
xlabel = xlabel,
ylabel = ylabel,
title = title)
plt.show()

# fucntion to create boxplot of all features


def box_plot(data):

plt.subplots(figsize=(15,6))
data.boxplot(patch_artist=True, sym="k.")
plt.xticks(rotation=90)

# fucntion to get dataset's columns and rows

def datasetShape(data):
rows, cols = data.shape
print("The dataframe has",rows,"rows and",cols,"columns.")

# fucntion to get a total diagnostic result
# Reference: https://www.kaggle.com/asimislam/tutorial-python-subplots

def diagnostic_plots(data, variable):
# function takes a dataframe (df) and
# the variable of interest as arguments

# define figure size
plt.figure(figsize=(25, 5))

# creating histogram
plt.subplot(1, 5, 1)
sns.histplot(data[variable], bins=30)
plt.title('Histogram')

# creating Q-Q plot
plt.subplot(1, 5, 2)
stats.probplot(data[variable], dist="norm", plot=plt)
plt.ylabel('Variable quantiles')

# creating boxplot
plt.subplot(1, 5, 3)
sns.boxplot(y=data[variable])
plt.title('Boxplot')

plt.show()



# function to select numerical and categorical features

def divideFeatures(data):
numerical_features = data.select_dtypes(include=[np.number])
categorical_features = data.select_dtypes(include=[np.object])
return numerical_features, categorical_features


# fucntion to fill the Nan values with a specific value

def fillNan(data, column, value):
data[column].fillna(value, inplace = True)



# fucntion to plot kde
# Reference: https://www.analyticsvidhya.com/blog/2020/10/optimizing-exploratory-data-analysis-using-functions-in-python/


def plot_cont_kde(data, var, l=10, b=5):
mini = data[var].min()
maxi = data[var].max()
ran = data[var].max()-data[var].min()
mean = data[var].mean()
skew = data[var].skew()
kurt = data[var].kurtosis()
median = data[var].median()
st_dev = data[var].std()
points = mean-st_dev, mean+st_dev
fig, axes = plt.subplots(1, 2)
sns.boxplot(data=data, x=var, ax=axes[0])
sns.distplot(a=data[var], ax=axes[1], color='#ff4125')
sns.lineplot(points, [0, 0], color='black', label="std_dev")
sns.scatterplot([mini, maxi], [0, 0],
color='orange', label="min/max")
sns.scatterplot([mean], [0], color='red', label="mean")
sns.scatterplot([median], [0], color='blue', label="median")
fig.set_size_inches(l, b)
plt.title('std_dev = {}; kurtosis = {};nskew = {}; range = {}; nmean = {}; median = {};'
.format((round(points[0],2),round(points[1],2)),
round(kurt,2),round(skew,2),(round(mini,2),round(maxi,2),
round(ran,2)),round(mean,2), round(median,2)))


# fucntion to calculate and plot missing values
# Reference: https://stackoverflow.com/questions/51070985/find-out-the-percentage-of-missing-values-in-each-column-in-the-given-dataset

def calculating_missing_values(data):
missing = data.isna().sum().sort_values(ascending = True)
missing = missing[missing !=0]
missing_percentage = missing/data.shape[0]*100
# return missing, missing_percentage
if data.isna().any().sum()>0:
missing, missing_percentage = calculating_missing_values(data)
missing.plot(kind ='bar', figsize=(30,10))
plt.title('Missing Values')
plt.show()
else:
print ('No missing values here')
22 changes: 22 additions & 0 deletions setup.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
import setuptools


setuptools.setup(
name='data_inspector',
version='0.0.8',
author="Kazi Amit Hasan",
author_email="[email protected]",
description="This module brings different functions to make EDA, data cleaning easier.",
long_description=open('README.md').read() + '\n\n' + open('CHANGELOG.txt').read(),
License='MIT',
long_description_content_type="text/markdown",
url="",
keywords='eda',
packages=setuptools.find_packages(),
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
install_requires=['pandas==1.1.2','matplotlib==3.1.2','numpy==1.18.5', 'seaborn==0.11.1','scipy==1.6.2']
)

0 comments on commit e77d2e0

Please sign in to comment.