-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'feature/#2_backpropagation_oop_example' into develop
# Conflicts: # yarn.lock
- Loading branch information
Showing
18 changed files
with
1,241 additions
and
435 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
src/**/*.d.ts |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,7 @@ | ||
module.exports = { | ||
printWidth: 180, | ||
bracketSpacing: false, | ||
jsxBracketSameLine: true, | ||
singleQuote: true, | ||
trailingComma: false, | ||
trailingComma: 'none', | ||
bracketSpacing: true | ||
}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,9 @@ | ||
# machine-learning | ||
|
||
A set of code for testing machine learning related ideas in node enviroment | ||
|
||
Feedforward neural network with backpropagation | ||
|
||
- More: http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html | ||
|
||
- More: https://www.youtube.com/watch?v=t-Jpm1axBko |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
|
||
|
||
|
||
|
||
Cannot solve network in 9999 steps | ||
interesting bug - newtork passed propagation one time in forward direction and nex time in back direction | ||
|
||
in | ||
|
||
Configuration.bias = 1; | ||
Configuration.activationType = 'Sigmoid'; | ||
Configuration.useCostFunction = 'Identity'; | ||
const inputs = [1, 0]; | ||
const targetOutputs = [1]; | ||
|
||
const error = 0.0001; | ||
const maxSteps = 10000; | ||
const ldelta = 0.1; | ||
const debug = true; | ||
const layers = [2, 2, 1]; | ||
|
||
// Neurons: XYZ X - source output, Y - layer row Z - input Layer | ||
// Debug. prefill weights | ||
// [ [layer1], [layer2], ..., [[neuron1], [neuron2], ... ], [[[weight1, weight2, ...]], [[weight1, weight2, ...]], ...], [neuron2], ... ] ] | ||
const weights = [ | ||
[ | ||
[0.13, -0.42], // w111, w211 | ||
[-0.34, 0.38] // w121, w221 | ||
], | ||
[ | ||
[0.25, -0.2], // w112, w212 | ||
[0.07, 0.32] // w122, 2222 | ||
], | ||
[[-0.41, 0.12]] // w113, w213 | ||
]; | ||
|
||
|
||
OUT: | ||
|
||
Nt : Learn step 9999 | ||
Nt : Propagation | ||
Nr 12: Out: act(2.7451) -> 0.94 | ||
Nr 12: prediction 0.94 | ||
Nr 22: Out: act(3.9656) -> 0.98 | ||
Nr 22: prediction 0.98 | ||
Nr 11: Out: act(7.1340) -> 1.00 | ||
Nr 11: prediction 1.00 | ||
Nr 21: Out: act(7.8411) -> 1.00 | ||
Nr 21: prediction 1.00 | ||
Nr 10: Out: act(0.028) -> 0.51 | ||
Nr 10: prediction 0.51 | ||
Nr 20: Out: act(-0.19) -> 0.45 | ||
Nr 20: prediction 0.45 | ||
Nr 13: costf expec: 1.0000, act: 0.99 | ||
Lr 3: Lec: 0 0.0050 | ||
Lr 3: Lec: 0.0050 | ||
Nt : Cost error search 0.0050 | ||
Nt : Res1 0.0050 <=? 0.0001 | ||
Nt : Back propagation | ||
Lr 0: CountErrors | ||
Lr 1: CountErrors | ||
Nr 10: weightError W110 = 0 | ||
Nr 20: weightError W120 = 0 | ||
Nr 10: weightError W210 = 0 | ||
Nr 20: weightError W220 = 0 | ||
Lr 1: PropagationError [ 0, 0 ] | ||
Lr 2: CountErrors | ||
Nr 11: weightError W111 = 0 | ||
Nr 21: weightError W121 = 0 | ||
Nr 11: weightError W211 = 0 | ||
Nr 21: weightError W221 = 0 | ||
Lr 2: PropagationError [ 0, 0 ] | ||
Lr 3: CountErrors | ||
Nr 12: weightError W112 = 0 | ||
Nr 22: weightError W122 = 0 | ||
Lr 3: PropagationError [ 0 ] | ||
Step weights [ | ||
[ | ||
[ 3.6557519074579687, 2.750120828433372 ], | ||
[ 3.3842892480045124, 3.730466980473381 ] | ||
], | ||
[ | ||
[ 1.7539241589012051, 1.3473803347581663 ], | ||
[ 2.9805490674365664, 3.333285567708932 ] | ||
], | ||
[ [ 1.7626923588248318, 2.5608905458477635 ] ] | ||
] | ||
Programm finished [ 0.9949911111648337 ] [ 1 ] | ||
Result weights [ | ||
[ | ||
[ 3.6557519074579687, 2.750120828433372 ], | ||
[ 3.3842892480045124, 3.730466980473381 ] | ||
], | ||
[ | ||
[ 1.7539241589012051, 1.3473803347581663 ], | ||
[ 2.9805490674365664, 3.333285567708932 ] | ||
], | ||
[ [ 1.7626923588248318, 2.5608905458477635 ] ] | ||
] | ||
Done in 194.45s. | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,162 @@ | ||
export class Layer {} | ||
import { Neuron, StringFunctions } from './'; | ||
|
||
// shortcut to rounding function | ||
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars | ||
// const _fnz = StringFunctions.fnz; | ||
|
||
/** | ||
* One neurons layer | ||
*/ | ||
export class Layer { | ||
private debug = false; | ||
private name = ''; | ||
public neurons: Neuron[] = []; | ||
|
||
constructor( | ||
public layerId: number, | ||
private neuronsAmount: number, | ||
debug?: boolean | ||
) { | ||
this.debug = !!debug; | ||
this.init(); | ||
} | ||
|
||
private init = (): void => { | ||
this.neurons = []; | ||
this.name = `Lr ${this.layerId}`; | ||
for (let i = 0; i < this.neuronsAmount; i++) { | ||
const neuronId = i + 1; | ||
const neuron = new Neuron(this.layerId, neuronId, this.debug); | ||
this.neurons.push(neuron); | ||
} | ||
}; | ||
|
||
/** Allows to modify weighs of neurons for debug purposes */ | ||
public initWeights = (weights: number[][]): void => { | ||
// this.log('Lw', weights); | ||
for (let i = 0; i < this.neurons.length; i++) { | ||
const neuron = this.neurons[i]; | ||
neuron.initWeights(weights[i]); | ||
} | ||
}; | ||
|
||
/** Debug method. Allows to set weights directly */ | ||
public getWeights = (): number[][] => { | ||
// this.log('GNe', weights); | ||
const weights: number[][] = []; | ||
for (let i = 0; i < this.neurons.length; i++) { | ||
const neuron = this.neurons[i]; | ||
weights.push(neuron.getWeights()); | ||
} | ||
return weights; | ||
}; | ||
|
||
/** | ||
* Init layer, used to set output vars in the first layer | ||
* @param sourceLayer | ||
*/ | ||
public setOutput = (inputVariables: number[]): void => { | ||
if (this.layerId !== 0) { | ||
this.log(`WARN: Current layer ${this.layerId} is not an input layer!`); | ||
} | ||
for (let i = 0; i < this.neurons.length; i++) { | ||
this.neurons[i].output = inputVariables[i]; | ||
} | ||
}; | ||
|
||
/** | ||
* Propagate previous layer neurons to all current layer neurons | ||
* @param sourceLayer | ||
*/ | ||
public propagate = (sourceLayer: Layer): void => { | ||
// this.log( | ||
// `Propagate layer ${this.layerId} from layer ${sourceLayer.layerId}`, | ||
// this.neurons.length | ||
// ); | ||
for (let i = 0; i < this.neurons.length; i++) { | ||
this.propagateNeuron(this.neurons[i], sourceLayer); | ||
this.neurons[i].prediction(); | ||
} | ||
}; | ||
|
||
/** | ||
* Takes layer's neuron and feed it with all income signals | ||
* @param neuron | ||
*/ | ||
private propagateNeuron = (neuron: Neuron, sourceLayer: Layer): void => { | ||
// this.log(`propagateNeuron`, sourceLayer.neurons.length); | ||
for (let i = 0; i < sourceLayer.neurons.length; i++) { | ||
neuron.propagate(i, sourceLayer.neurons[i].output); | ||
// neuron.propagate(0, sourceLayer.neurons[i].output); | ||
} | ||
}; | ||
|
||
public output = (): number[] => { | ||
const resultsList: number[] = []; | ||
for (let i = 0; i < this.neurons.length; i++) { | ||
resultsList.push(this.neurons[i].output); | ||
} | ||
return resultsList; | ||
}; | ||
|
||
public cost = (outputArray: number[]): number => { | ||
let cost = 0; | ||
for (let i = 0; i < this.neurons.length; i++) { | ||
cost += this.neurons[i].cost(outputArray[i]); | ||
} | ||
const layerErrorCost = cost / (2 * this.neurons.length); // TODO: ? what is the purpose of division by 2*... ? | ||
// this.log(`Lec: ${fnz(layerErrorCost)}`); | ||
return layerErrorCost; | ||
}; | ||
|
||
/** Receives values of errors on the next layer neurons */ | ||
public countErrors = ( | ||
nextLayerOutputArray: number[], | ||
nextLayer?: Layer | ||
): number[] => { | ||
this.log(`CountErrors`); | ||
if (this.layerId === 0) { | ||
return []; | ||
} | ||
|
||
const errorWeights: number[] = []; | ||
for (let i = 0; i < this.neurons.length; i++) { | ||
if (nextLayer === undefined) { | ||
this.neurons[i].propagationError = this.neurons[i].cost( | ||
nextLayerOutputArray[i] | ||
); | ||
} else { | ||
this.neurons[i].propagationError = nextLayer.getWeightError(i); | ||
} | ||
|
||
errorWeights[i] = this.neurons[i].propagationError; | ||
} | ||
this.log(`PropagationError`, errorWeights); | ||
return errorWeights; | ||
}; | ||
|
||
/** | ||
* Collects sum of all errors on the given weight index | ||
*/ | ||
private getWeightError = (inputId: number): number => { | ||
let error = 0; | ||
for (let i = 0; i < this.neurons.length; i++) { | ||
error += this.neurons[i].weightError(inputId); | ||
} | ||
return error; | ||
}; | ||
|
||
public correctWeights = (learningDelta: number): void => { | ||
for (let i = 0; i < this.neurons.length; i++) { | ||
this.neurons[i].correctWeights(learningDelta); | ||
} | ||
}; | ||
|
||
private log = (logLine: string, ...args: unknown[]): void => { | ||
if (!this.debug) { | ||
return; | ||
} | ||
|
||
StringFunctions.log(`${this.name}: ${logLine}`, ...args); | ||
}; | ||
} |
Oops, something went wrong.