-
Notifications
You must be signed in to change notification settings - Fork 0
/
functions_module.py
192 lines (135 loc) · 5.07 KB
/
functions_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# import resources
try:
import numpy as np
import torch
from torchvision import models, transforms
from io import BytesIO
import requests
from PIL import Image
import torch.optim as optim
import matplotlib.pyplot as plt
import uuid
import gc
print("All module loaded in functions_module block ......")
except:
print("Some Modules are missing.....")
############################################################################################################################
device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
import gc
torch.cuda.empty_cache()
gc.collect()
def vgg_model():
# Instantiate vgg model
vgg = models.vgg19(pretrained=True).features
# we dont need VGG parameters so freeze it
for param in vgg.parameters():
param.requires_grad_(False)
vgg = vgg.to(device)
return vgg
def image_loader(img_path, max_size=500, shape=None):
# In case img_path is web address
if 'http' in img_path:
response = requests.get(img_path)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(img_path).convert('RGB')
# we dont want image size to be big, because it slow down speed
if max(image.size) > max_size:
size = max_size
else:
size = max(image.size)
if shape is not None:
size = shape
# convert image to tensor and normalize it
in_transform = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))
])
image = in_transform(image)[:3,:,:].unsqueeze(0)
return image
def np_convert(tensor):
image = tensor.to('cpu').clone().detach()
image = image.numpy().squeeze()
image = image.transpose(1,2,0)
image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
image = image.clip(0,1)
return image
def get_features(image, model, layers=None):
# Need the layers for the content and style representations of an image
if layers is None:
layers = {'0': 'conv1_1',
'5': 'conv2_1',
'10': 'conv3_1',
'19': 'conv4_1',
'21': 'conv4_2', ## content representation
'28': 'conv5_1'}
features = {}
x = image
# model._modules is a dictionary holding each module in the model
for name, layer in model._modules.items():
x = layer(x)
if name in layers:
features[layers[name]] = x
return features
def gram_matrix(tensor):
_,d,h,w = tensor.size()
# reshape the tensor so we're multiply the features for every chennels
tensor = tensor.view(d, h*w)
# calculate the gram matrix
gram = torch.mm(tensor, tensor.t())
return gram
def style_on_target(model, content_image,style_image):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
content = image_loader(content_image).to(device)
style = image_loader(style_image, shape=content.shape[-2:]).to(device)
content_features = get_features(content, model)
style_features = get_features(style, model)
style_grams = {layer: gram_matrix(style_features[layer]) for layer in style_features}
target = content.clone().requires_grad_(True).to(device)
style_weights = {'conv1_1': 0.95,
'conv2_1':0.75,
'conv3_1':0.4,
'conv4_1':0.4,
'conv5_1':0.3}
content_weight = 1
style_weight = 1e4
optimizer = optim.Adam([target], lr=0.1)
steps = 100
for i in range(1, steps+1):
target_features = get_features(target, model)
content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2'])**2)
style_loss = 0
for layer in style_weights:
target_feature = target_features[layer]
target_gram = gram_matrix(target_feature)
_, d, h, w = target_feature.shape
style_gram = style_grams[layer]
layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram)**2)
style_loss += layer_style_loss / (d * h * w)
total_loss = content_weight * content_loss + style_weight * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
unique_name = str(uuid.uuid4()) + ".png"
result_path = "static/uploads/content/" + unique_name
plt.imsave(result_path, np_convert(target))
return unique_name
def parameter_gen(content_path, style_path):
content_path = "static/uploads/content/" + content_path
style_path = "static/uploads/content/" + style_path
torch.cuda.empty_cache()
gc.collect()
vgg = vgg_model()
params = {
'model':vgg,
'content_image' : content_path,
'style_image' : style_path
}
torch.cuda.empty_cache()
gc.collect()
f_name = style_on_target(**params)
gc.collect()
return f_name