Skip to content
/ SGH Public

Scale Guided Hypernetwork for Blind Super-Resolution Image Quality Assessment

Notifications You must be signed in to change notification settings

JunFu1995/SGH

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scale Guided Hypernetwork for Blind Super-Resolution Image Quality Assessment

Paper

visitors

TODO

  • Code release
  • Upload datasets
  • clean the code

Introduction

  • log: save training log
  • nets: define iqa model
  • save: save model
  • nets: define iqa model
  • datasets.py: define datasets
  • datasets_deepsrq.py: define datasets for deepsrq
  • engine.py: training and test engine
  • train_test_IQA.py: setup training and test

Train and Test

First, download datasets used in this paper from here.

Second, change the dataset path in the train_test_IQA.py as follows:

    path = {
        'QADS': 'yourpath/QADS/',
        'CVIU': 'yourpath/CVIU/',
        'Waterloo': 'yourpath/Waterloo/',
    } 

Third, train and test the model using the following command:

python train_test_IQA.py --dataset xxx --netFile xxx --gpuid x --batch_size 64

Some mandatory options:

  • --dataset: string, Training and testing dataset, support datasets: 'CVIU' | 'QADS'| 'Waterloo'.
  • --netFile: string, IQA model, support models: 'DBCNN' | 'HyperIQA' | 'CNNIQA' | 'Resnet50' | 'JCSAN' | 'DeepSRQ'.
  • --gpuid: int, gpu device
  • --batch_size: int, Batch size, 64.

Acknowledgement

This project is based on HyperIQA. Thanks for the awesome work.

Citation

Please cite the following paper if you use this repository in your reseach.

@article{fu2023scale,
  title={Scale Guided Hypernetwork for Blind Super-Resolution Image Quality Assessment},
  author={Fu, Jun},
  journal={arXiv preprint arXiv:2306.02398},
  year={2023}
}

Contact

For any questions, feel free to contact: [email protected]

About

Scale Guided Hypernetwork for Blind Super-Resolution Image Quality Assessment

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages