Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add SkewNormal distribution #1104

Merged
merged 13 commits into from
Aug 8, 2020
1 change: 1 addition & 0 deletions src/Distributions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,7 @@ export
Rayleigh,
Semicircle,
Skellam,
SkewNormal,
StudentizedRange,
SymTriangularDist,
TDist,
Expand Down
73 changes: 73 additions & 0 deletions src/univariate/continuous/skewnormal.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
"""
SkewNormal(ξ, ω, α)
The *skew normal distribution* is a continuous probability distribution
that generalises the normal distribution to allow for non-zero skewness.
External links
* [Skew normal distribution on Wikipedia](https://en.wikipedia.org/wiki/Skew_normal_distribution)
* [Discourse](https://discourse.julialang.org/t/skew-normal-distribution/21549/7)
* [SkewDist.jl](https://github.com/STOR-i/SkewDist.jl)
"""
struct SkewNormal{T<:Real} <: ContinuousUnivariateDistribution
ξ::T
ω::T
α::T
SkewNormal{T}(ξ::T, ω::T, α::T) where {T} = new{T}(ξ, ω, α)
end

function SkewNormal(ξ::T, ω::T, α::T; check_args=true) where {T <: Real}
check_args && @check_args(SkewNormal, ω > zero(ω))
return SkewNormal{T}(ξ, ω, α)
end

SkewNormal(ξ::Real, ω::Real, α::Real) = SkewNormal(promote(ξ, ω, α)...)
SkewNormal(ξ::Integer, ω::Integer, α::Integer) = SkewNormal(float(ξ), float(ω), float(α))
SkewNormal(α::T) where {T <: Real} = SkewNormal(zero(α), one(α), α)
SkewNormal() = SkewNormal(0.0, 1.0, 0.0)

@distr_support SkewNormal -Inf Inf

#### Conversions
convert(::Type{SkewNormal{T}}, ξ::S, ω::S, α::S) where {T <: Real, S <: Real} = SkewNormal(T(ξ), T(ω), T(α))
convert(::Type{SkewNormal{T}}, d::SkewNormal{S}) where {T <: Real, S <: Real} = SkewNormal(T(d.ξ), T(d.ω), T(d.α), check_args=false)

#### Parameters
params(d::SkewNormal) = (d.ξ, d.ω, d.α)
@inline partype(d::SkewNormal{T}) where {T<:Real} = T

#### Statistics
delta(d::SkewNormal) = d.α / √(1 + d.α^2)
mean_z(d::SkewNormal) = √(2/π) * delta(d)
std_z(d::SkewNormal) = 1 - (2/π) * delta(d)^2

mean(d::SkewNormal) = d.ξ + d.ω * mean_z(d)
var(d::SkewNormal) = abs2(d.ω) * (1 - mean_z(d)^2)
std(d::SkewNormal) = √var(d)
skewness(d::SkewNormal) = ((4 - π)/2) * (mean_z(d)^3/(1 - mean_z(d)^2)^(3/2))
kurtosis(d::SkewNormal) = 2 * (π-3) * ((delta(d) * sqrt(2/π))^4/(1-2 * (delta(d)^2)/π)^2)

# no analytic expression for max m_0(d) but accurate numerical approximation
m_0(d::SkewNormal) = mean_z(d) - (skewness(d) * std_z(d))/2 - (sign(d.α)/2) * exp(-2π/abs(d.α))
mode(d::SkewNormal) = d.ξ + d.ω * m_0(d)

#### Evalution
pdf(d::SkewNormal, x::Real) = (2/d.ω) * normpdf((x-d.ξ)/d.ω) * normcdf(d.α * (x-d.ξ)/d.ω)
logpdf(d::SkewNormal, x::Real) = log(2) - log(d.ω) + normlogpdf((x-d.ξ) / d.ω) + normlogcdf(d.α * (x-d.ξ) / d.ω)
#cdf requires Owen's T function.
#cdf/quantile etc

mgf(d::SkewNormal, t::Real) = 2 * exp(d.ξ * t + (d.ω^2 * t^2)/2 ) * normcdf(d.ω * delta(d) * t)

cf(d::SkewNormal, t::Real) = exp(im * t * d.ξ - (d.ω^2 * t^2)/2) * (1 + im * erfi((d.ω * delta(d) * t)/(sqrt(2))) )

#### Sampling
function rand(rng::AbstractRNG, d::SkewNormal)
u0 = randn(rng)
v = randn(rng)
δ = delta(d)
u1 = δ * u0 + √(1-δ^2) * v
return d.ξ + d.ω * sign(u0) * u1
end

## Fitting # to be added see: https://github.com/STOR-i/SkewDist.jl/issues/3


1 change: 1 addition & 0 deletions src/univariates.jl
Original file line number Diff line number Diff line change
Expand Up @@ -624,6 +624,7 @@ const continuous_distributions = [
"pareto",
"rayleigh",
"semicircle",
"skewnormal",
"studentizedrange",
"symtriangular",
"tdist",
Expand Down
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@ const tests = [
"univariate_bounds",
"negativebinomial",
"bernoulli",
"skewnormal",
]

printstyled("Running tests:\n", color=:blue)
Expand Down
44 changes: 44 additions & 0 deletions test/skewnormal.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
using Test
using Distributions
import Distributions: normpdf, normcdf, normlogpdf, normlogcdf

@testset "SkewNormal" begin
@test_throws ArgumentError SkewNormal(0.0, 0.0, 0.0)
d1 = SkewNormal(1, 2, 3)
d2 = SkewNormal(1.0f0, 2, 3)
@test partype(d1) == Float64
@test partype(d2) == Float32
@test params(d1) == (1.0, 2.0, 3.0)
# Azzalini sn: sprintf("%.17f",dsn(3.3, xi=1, omega=2, alpha=3))
@test pdf(d1, 3.3) ≈ 0.20587854616839998
@test minimum(d1) ≈ -Inf
@test maximum(d1) ≈ Inf
@test logpdf(d1, 3.3) ≈ log(pdf(d1, 3.3))
## cdf and quantile: when we get Owen's T
#@test cdf(d, 4.5) ≈ 1.0 #when we get Owen's T
@test mean(d1) ≈ 2.513879513212096
@test std(d1) ≈ 1.306969326142243
#
d0 = SkewNormal(0.0, 1.0, 0.0)
@test SkewNormal() == d0
d3 = SkewNormal(0.5, 2.2, 0.0)
d4 = Normal(0.5, 2.2)
#
@test pdf(d3, 3.3) == Distributions.pdf(d4, 3.3)
@test pdf.(d3, 1:3) == Distributions.pdf.(d4, 1:3)
a = mean(d3), var(d3), std(d3)
b = Distributions.mean(d4), Distributions.var(d4), Distributions.std(d4)
@test a == b
@test skewness(d3) == Distributions.skewness(d4)
@test kurtosis(d3) == Distributions.kurtosis(d4)
@test mgf(d3, 2.25) == Distributions.mgf(d4, 2.25)
@test cf(d3, 2.25) == Distributions.cf(d4, 2.25)
end


# R code using Azzalini's package sn
#library("sn")
#sprintf("%.17f", dsn(3.3, xi=1, omega=2, alpha=3))
#f1 <- makeSECdistr(dp=c(1,2,3), family="SN", name="First-SN")
#sprintf("%.15f", mean(f1))
#sprintf("%.15f", sd(f1))