Skip to content

Commit

Permalink
Allow OffsetArrays and integer arrays in CosineDist #164
Browse files Browse the repository at this point in the history
  • Loading branch information
dkarrasch authored May 20, 2020
2 parents 1a03b7e + 846f5e8 commit d01033e
Show file tree
Hide file tree
Showing 5 changed files with 31 additions and 16 deletions.
5 changes: 3 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "Distances"
uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
version = "0.8.2"
version = "0.9.0"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand All @@ -10,8 +10,9 @@ Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
julia = "1"

[extras]
OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Random", "Test"]
test = ["OffsetArrays", "Random", "Test"]
14 changes: 12 additions & 2 deletions src/common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -99,16 +99,26 @@ function sqrt!(a::AbstractArray)
end

function sumsq_percol(a::AbstractMatrix{T}) where {T}
m = size(a, 1)
n = size(a, 2)
r = Vector{T}(undef, n)
for j = 1:n
@simd for j in 1:n
aj = view(a, :, j)
r[j] = dot(aj, aj)
end
return r
end

function norm_percol(a::AbstractMatrix{T}) where {T}
n = size(a, 2)
T = typeof(sqrt(oneunit(T)))
r = Vector{√T}(undef, n)
@simd for j in 1:n
aj = view(a, :, j)
r[j] = sqrt(dot(aj, aj))
end
return r
end

function wsumsq_percol(w::AbstractArray, a::AbstractMatrix)
m = size(a, 1)
n = size(a, 2)
Expand Down
13 changes: 7 additions & 6 deletions src/metrics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,7 @@ Base.@propagate_inbounds function _evaluate(d::UnionMetrics, a::AbstractArray, b
end
@inbounds begin
s = eval_start(d, a, b)
if IndexStyle(a, b) === IndexLinear() || size(a) == size(b)
if (IndexStyle(a, b) === IndexLinear() && eachindex(a) == eachindex(b)) || axes(a) == axes(b)
@simd for I in eachindex(a, b)
ai = a[I]
bi = b[I]
Expand Down Expand Up @@ -265,8 +265,9 @@ Base.@propagate_inbounds function _evaluate(d::UnionMetrics, a::AbstractArray, b
end
@inbounds begin
s = eval_start(d, a, b)
if IndexStyle(a, b, p) === IndexLinear() || size(a) == size(b)
@simd for I in eachindex(a, b)
if (IndexStyle(a, b, p) === IndexLinear() && eachindex(a) == eachindex(b) == eachindex(p)) ||
axes(a) == axes(b) == axes(p)
@simd for I in eachindex(a, b, p)
ai = a[I]
bi = b[I]
pi = p[I]
Expand Down Expand Up @@ -801,8 +802,8 @@ function _pairwise!(r::AbstractMatrix, dist::CosineDist,
a::AbstractMatrix, b::AbstractMatrix)
m, na, nb = get_pairwise_dims(r, a, b)
mul!(r, a', b)
ra = sqrt!(sumsq_percol(a))
rb = sqrt!(sumsq_percol(b))
ra = norm_percol(a)
rb = norm_percol(b)
for j = 1:nb
@simd for i = 1:na
@inbounds r[i, j] = max(1 - r[i, j] / (ra[i] * rb[j]), 0)
Expand All @@ -813,7 +814,7 @@ end
function _pairwise!(r::AbstractMatrix, dist::CosineDist, a::AbstractMatrix)
m, n = get_pairwise_dims(r, a)
mul!(r, a', a)
ra = sqrt!(sumsq_percol(a))
ra = norm_percol(a)
@inbounds for j = 1:n
@simd for i = j + 1:n
r[i, j] = max(1 - r[i, j] / (ra[i] * ra[j]), 0)
Expand Down
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ using Distances

using Test
using LinearAlgebra
using OffsetArrays
using Random
using Statistics

Expand Down
14 changes: 8 additions & 6 deletions test/test_dists.jl
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,7 @@ end
x_int, y_int = Int64.(x), Int64.(y)
@test cosine_dist(x_int, y_int) == (1.0 - 112.0 / sqrt(19530.0))
@test corr_dist(x, y) cosine_dist(x .- mean(x), vec(y) .- mean(y))
@test corr_dist(OffsetVector(x, -1:length(x)-2), y) == corr_dist(x, y)
@test chisq_dist(x, y) == sum((x - vec(y)).^2 ./ (x + vec(y)))
@test spannorm_dist(x, y) == maximum(x - vec(y)) - minimum(x - vec(y))

Expand Down Expand Up @@ -504,8 +505,8 @@ function test_pairwise(dist, x, y, T)
rxx[i, j] = dist(x[:, i], x[:, j])
end
# As earlier, we have small rounding errors in accumulations
@test pairwise(dist, x, y) rxy
@test pairwise(dist, x) rxx
@test pairwise(dist, x, y, dims=2) rxy
@test pairwise(dist, x, dims=2) rxx
@test pairwise(dist, x, y, dims=2) rxy
@test pairwise(dist, x, dims=2) rxx
@test pairwise(dist, permutedims(x), permutedims(y), dims=1) rxy
Expand Down Expand Up @@ -536,6 +537,7 @@ end
test_pairwise(Hamming(), A, B, T)

test_pairwise(CosineDist(), X, Y, T)
test_pairwise(CosineDist(), A, B, T)
test_pairwise(CorrDist(), X, Y, T)

test_pairwise(ChiSqDist(), X, Y, T)
Expand Down Expand Up @@ -570,16 +572,16 @@ end

@testset "Euclidean precision" begin
X = [0.1 0.2; 0.3 0.4; -0.1 -0.1]
pd = pairwise(Euclidean(1e-12), X, X)
pd = pairwise(Euclidean(1e-12), X, X, dims=2)
@test pd[1, 1] == 0
@test pd[2, 2] == 0
pd = pairwise(Euclidean(1e-12), X)
pd = pairwise(Euclidean(1e-12), X, dims=2)
@test pd[1, 1] == 0
@test pd[2, 2] == 0
pd = pairwise(SqEuclidean(1e-12), X, X)
pd = pairwise(SqEuclidean(1e-12), X, X, dims=2)
@test pd[1, 1] == 0
@test pd[2, 2] == 0
pd = pairwise(SqEuclidean(1e-12), X)
pd = pairwise(SqEuclidean(1e-12), X, dims=2)
@test pd[1, 1] == 0
@test pd[2, 2] == 0
end
Expand Down

4 comments on commit d01033e

@dkarrasch
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Error while trying to register: Register Failed
@dkarrasch, it looks like you are not a publicly listed member/owner in the parent organization (JuliaStats).
If you are a member/owner, you will need to change your membership to public. See GitHub Help

@dkarrasch
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/15042

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.9.0 -m "<description of version>" d01033e90eb8bdcdfaaa1e63e68145854e22ba19
git push origin v0.9.0

Please sign in to comment.