Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support acyclic coloring for sparse Hessians #294

Merged
merged 1 commit into from
Aug 17, 2024
Merged

Conversation

amontoison
Copy link
Member

@amontoison amontoison commented Aug 16, 2024

#292 was opened from a fork.

Copy link
Contributor

github-actions bot commented Aug 16, 2024

Package name latest stable
CaNNOLeS.jl
DCISolver.jl
DerivativeFreeSolvers.jl
JSOSolvers.jl
NLPModelsIpopt.jl
OptimalControl.jl
OptimizationProblems.jl
Percival.jl
QuadraticModels.jl
SolverBenchmark.jl
SolverTools.jl

Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmarks:
    • Target: 16 Aug 2024 - 22:43
    • Baseline: 16 Aug 2024 - 23:43
  • Package commits:
    • Target: b0841c
    • Baseline: 792c90
  • Julia commits:
    • Target: 48d4fd
    • Baseline: 48d4fd
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 0.60 (5%) ✅ 0.60 (1%) ✅
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 0.67 (5%) ✅ 0.68 (1%) ✅
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 0.62 (5%) ✅ 1.00 (1%)
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 0.83 (5%) ✅ 0.86 (1%) ✅
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 0.93 (5%) ✅ 1.00 (1%)
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 0.77 (5%) ✅ 0.80 (1%) ✅
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 1.01 (5%) 1.01 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 1.00 (5%) 1.02 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 1.03 (5%) 1.05 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 1.00 (5%) 1.01 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 0.36 (5%) ✅ 1.22 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 1.11 (5%) ❌ 1.09 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 1.06 (5%) ❌ 1.04 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 0.63 (5%) ✅ 1.01 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 0.92 (5%) ✅ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 1.00 (5%) 1.01 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 0.99 (5%) 1.03 (1%) ❌

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Target

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      18972 s          0 s        907 s      51516 s          0 s
       #2  3206 MHz      18215 s          0 s       1002 s      52184 s          0 s
       #3  3242 MHz      21739 s          0 s        875 s      48792 s          0 s
       #4  3262 MHz      22416 s          0 s        985 s      48023 s          0 s
  Memory: 15.606491088867188 GB (12216.5625 MB free)
  Uptime: 7152.68 sec
  Load Avg:  1.06  1.03  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2595 MHz      28028 s          0 s       1276 s      77990 s          0 s
       #2  2445 MHz      27315 s          0 s       1384 s      78603 s          0 s
       #3  3242 MHz      29830 s          0 s       1262 s      76217 s          0 s
       #4  3243 MHz      32165 s          0 s       1370 s      73795 s          0 s
  Memory: 15.606491088867188 GB (12497.10546875 MB free)
  Uptime: 10748.48 sec
  Load Avg:  1.01  1.05  1.02
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 16 Aug 2024 - 22:43
  • Package commit: b0841c
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 244.202 ms (5%) 997.98 KiB (1%) 7412
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 7.538 ms (5%) 244.23 KiB (1%) 1595
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 21.584 ms (5%) 275.42 KiB (1%) 1931
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 456.899 ms (5%) 974.45 KiB (1%) 6747
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 13.526 ms (5%) 120.94 KiB (1%) 800
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 35.894 ms (5%) 275.42 KiB (1%) 1931
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 914.417 s (5%) 228.40 MiB (1%) 1905099
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 694.926 μs (5%) 5.57 MiB (1%) 386
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 420.870 ms (5%) 11.895 ms 199.53 MiB (1%) 1061157
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 15.443 ms (5%) 176.75 KiB (1%) 1071
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 72.976 ms (5%) 614.41 KiB (1%) 4406
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 75.722 ms (5%) 811.02 KiB (1%) 5897
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.979 ms (5%) 92.45 KiB (1%) 854
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 48.733 ms (5%) 328.39 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 41.466 ms (5%) 328.39 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 73.238 ms (5%) 335.50 KiB (1%) 2459
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 16.327 s (5%) 197.83 MiB (1%) 1467003
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 24.349 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 64.780 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 8.702 ms (5%) 201.30 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 64.302 ms (5%) 336.27 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 73.952 ms (5%) 336.27 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.693 ms (5%) 115.55 KiB (1%) 797
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 16.892 s (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 35.880 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 18.752 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.647 ms (5%) 81.31 KiB (1%) 467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 70.452 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 291.978 ms (5%) 1.46 MiB (1%) 11175
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 11.678 ms (5%) 208.41 KiB (1%) 1463
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 22.724 ms (5%) 57.89 MiB (1%) 85729
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 8.261 ms (5%) 19.56 MiB (1%) 30630
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 7.542 ms (5%) 14.59 MiB (1%) 37537
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 25.929 ms (5%) 59.05 MiB (1%) 169761
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 7.412 ms (5%) 14.83 MiB (1%) 36616
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 20.452 ms (5%) 47.32 MiB (1%) 60306
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 3.852 s (5%) 950.036 ms 2.67 GiB (1%) 10408617
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.420 ms (5%) 5.96 MiB (1%) 8805
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 3.768 ms (5%) 7.67 MiB (1%) 34102
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 11.685 ms (5%) 25.77 MiB (1%) 37042
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 40.627 ms (5%) 1.854 ms 93.17 MiB (1%) 71495
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 21.617 ms (5%) 53.93 MiB (1%) 48243
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 2.121 ms (5%) 10.41 MiB (1%) 34135
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 580.841 ms (5%) 33.241 ms 325.65 MiB (1%) 1650653
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 128.150 ms (5%) 58.84 MiB (1%) 700819
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 164.829 ms (5%) 69.61 MiB (1%) 953200
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 782.979 ms (5%) 65.804 ms 293.48 MiB (1%) 4116367
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 162.085 ms (5%) 69.76 MiB (1%) 821003
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 142.599 ms (5%) 72.90 MiB (1%) 834475
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 385.911 s (5%) 4.838 s 37.34 GiB (1%) 113504773
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 13.436 ms (5%) 11.29 MiB (1%) 105144
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 100.153 ms (5%) 47.00 MiB (1%) 516188
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 61.320 ms (5%) 34.96 MiB (1%) 377023
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 245.625 ms (5%) 6.676 ms 146.61 MiB (1%) 996224
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 188.034 ms (5%) 7.192 ms 103.20 MiB (1%) 867356
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 146.541 ms (5%) 2.902 ms 152.13 MiB (1%) 452555

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      18972 s          0 s        907 s      51516 s          0 s
       #2  3206 MHz      18215 s          0 s       1002 s      52184 s          0 s
       #3  3242 MHz      21739 s          0 s        875 s      48792 s          0 s
       #4  3262 MHz      22416 s          0 s        985 s      48023 s          0 s
  Memory: 15.606491088867188 GB (12216.5625 MB free)
  Uptime: 7152.68 sec
  Load Avg:  1.06  1.03  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 16 Aug 2024 - 23:43
  • Package commit: 792c90
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 406.417 ms (5%) 1.61 MiB (1%) 12345
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 11.314 ms (5%) 357.02 KiB (1%) 2387
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 21.584 ms (5%) 275.33 KiB (1%) 1929
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 458.829 ms (5%) 974.12 KiB (1%) 6740
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 13.738 ms (5%) 120.89 KiB (1%) 799
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 36.561 ms (5%) 275.33 KiB (1%) 1929
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 913.066 s (5%) 78.737 ms 228.35 MiB (1%) 1904100
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 1.124 ms (5%) 5.57 MiB (1%) 385
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 410.793 ms (5%) 8.217 ms 199.53 MiB (1%) 1061125
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 18.602 ms (5%) 206.59 KiB (1%) 1278
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 76.202 ms (5%) 614.27 KiB (1%) 4403
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 77.712 ms (5%) 810.83 KiB (1%) 5893
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.900 ms (5%) 92.41 KiB (1%) 853
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 49.413 ms (5%) 328.34 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 41.422 ms (5%) 328.34 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 73.416 ms (5%) 335.45 KiB (1%) 2458
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 17.584 s (5%) 197.78 MiB (1%) 1466003
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 24.144 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 65.029 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 8.897 ms (5%) 201.25 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 63.231 ms (5%) 336.22 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 74.819 ms (5%) 336.22 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.691 ms (5%) 115.50 KiB (1%) 796
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 17.020 s (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 35.891 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 18.743 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.783 ms (5%) 81.27 KiB (1%) 466
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 71.559 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 377.599 ms (5%) 1.82 MiB (1%) 13963
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 11.652 ms (5%) 208.36 KiB (1%) 1462
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 22.655 ms (5%) 57.39 MiB (1%) 84308
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 8.160 ms (5%) 19.35 MiB (1%) 29558
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 7.507 ms (5%) 14.32 MiB (1%) 35260
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 25.164 ms (5%) 56.39 MiB (1%) 144849
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 7.446 ms (5%) 14.83 MiB (1%) 36606
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 20.491 ms (5%) 46.82 MiB (1%) 55779
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 10.766 s (5%) 71.431 ms 2.19 GiB (1%) 5922030
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.380 ms (5%) 5.96 MiB (1%) 8795
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 3.409 ms (5%) 7.02 MiB (1%) 30130
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 11.046 ms (5%) 24.85 MiB (1%) 30413
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 40.058 ms (5%) 92.98 MiB (1%) 70419
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 21.783 ms (5%) 53.40 MiB (1%) 44238
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 2.228 ms (5%) 10.38 MiB (1%) 34124
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 606.920 ms (5%) 46.663 ms 324.61 MiB (1%) 1640232
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 131.088 ms (5%) 58.45 MiB (1%) 696759
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 165.165 ms (5%) 69.25 MiB (1%) 949429
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 782.916 ms (5%) 79.153 ms 290.81 MiB (1%) 4091455
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 167.054 ms (5%) 69.71 MiB (1%) 819997
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 143.797 ms (5%) 72.40 MiB (1%) 829948
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 610.184 s (5%) 3.481 s 36.86 GiB (1%) 109018186
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 14.659 ms (5%) 11.29 MiB (1%) 105134
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 100.507 ms (5%) 46.36 MiB (1%) 512288
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 62.225 ms (5%) 33.95 MiB (1%) 368894
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 243.037 ms (5%) 7.892 ms 146.43 MiB (1%) 995148
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 187.833 ms (5%) 6.635 ms 102.67 MiB (1%) 863351
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 148.893 ms (5%) 152.10 MiB (1%) 452544

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2595 MHz      28028 s          0 s       1276 s      77990 s          0 s
       #2  2445 MHz      27315 s          0 s       1384 s      78603 s          0 s
       #3  3242 MHz      29830 s          0 s       1262 s      76217 s          0 s
       #4  3243 MHz      32165 s          0 s       1370 s      73795 s          0 s
  Memory: 15.606491088867188 GB (12497.10546875 MB free)
  Uptime: 10748.48 sec
  Load Avg:  1.01  1.05  1.02
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.86
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmarks:
    • Target: 16 Aug 2024 - 22:47
    • Baseline: 16 Aug 2024 - 23:44
  • Package commits:
    • Target: b0841c
    • Baseline: 792c90
  • Julia commits:
    • Target: 48d4fd
    • Baseline: 48d4fd
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 0.59 (5%) ✅ 0.60 (1%) ✅
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 0.65 (5%) ✅ 0.68 (1%) ✅
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 0.53 (5%) ✅ 1.00 (1%)
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 1.06 (5%) ❌ 1.00 (1%)
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 0.79 (5%) ✅ 0.86 (1%) ✅
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 0.91 (5%) ✅ 1.00 (1%)
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 0.95 (5%) ✅ 1.00 (1%)
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 0.80 (5%) ✅ 0.80 (1%) ✅
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 0.80 (5%) ✅ 1.01 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 0.81 (5%) ✅ 1.01 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 0.76 (5%) ✅ 1.02 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 0.84 (5%) ✅ 1.05 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 0.88 (5%) ✅ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 0.83 (5%) ✅ 1.01 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 0.28 (5%) ✅ 1.22 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 0.99 (5%) 1.09 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 1.01 (5%) 1.04 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 0.87 (5%) ✅ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 0.78 (5%) ✅ 1.01 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 0.94 (5%) ✅ 1.01 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 0.90 (5%) ✅ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 0.98 (5%) 1.01 (1%) ❌
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 1.00 (5%) 1.03 (1%) ❌

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Target

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      20094 s          0 s        883 s      52201 s          0 s
       #2  2605 MHz      24810 s          0 s        893 s      47495 s          0 s
       #3  2445 MHz      20521 s          0 s        936 s      51721 s          0 s
       #4  3242 MHz      18016 s          0 s        988 s      54182 s          0 s
  Memory: 15.606491088867188 GB (12117.48828125 MB free)
  Uptime: 7332.35 sec
  Load Avg:  1.02  1.03  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3227 MHz      29180 s          0 s       1193 s      76896 s          0 s
       #2  3242 MHz      35006 s          0 s       1210 s      71080 s          0 s
       #3  2445 MHz      28973 s          0 s       1287 s      77014 s          0 s
       #4  2445 MHz      24462 s          0 s       1366 s      81451 s          0 s
  Memory: 15.606491088867188 GB (12691.55859375 MB free)
  Uptime: 10746.94 sec
  Load Avg:  1.1  1.04  1.01
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 16 Aug 2024 - 22:47
  • Package commit: b0841c
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 243.120 ms (5%) 997.98 KiB (1%) 7412
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 7.445 ms (5%) 244.23 KiB (1%) 1595
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 21.594 ms (5%) 275.42 KiB (1%) 1931
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 461.102 ms (5%) 974.45 KiB (1%) 6747
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 13.439 ms (5%) 120.94 KiB (1%) 800
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 36.194 ms (5%) 275.42 KiB (1%) 1931
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 912.920 s (5%) 228.40 MiB (1%) 1905099
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 593.672 μs (5%) 5.57 MiB (1%) 386
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 432.457 ms (5%) 13.542 ms 199.53 MiB (1%) 1061157
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 16.353 ms (5%) 176.75 KiB (1%) 1071
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 73.176 ms (5%) 614.41 KiB (1%) 4406
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 75.553 ms (5%) 811.02 KiB (1%) 5897
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.895 ms (5%) 92.45 KiB (1%) 854
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 48.796 ms (5%) 328.39 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 41.827 ms (5%) 328.39 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 73.794 ms (5%) 335.50 KiB (1%) 2459
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 16.436 s (5%) 197.83 MiB (1%) 1467003
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 24.391 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 64.622 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 8.834 ms (5%) 201.30 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 64.094 ms (5%) 336.27 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 73.745 ms (5%) 336.27 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.694 ms (5%) 115.55 KiB (1%) 797
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 17.177 s (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 36.039 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 18.703 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.670 ms (5%) 81.31 KiB (1%) 467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 71.881 ms (5%) 209.17 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 292.356 ms (5%) 1.46 MiB (1%) 11175
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 11.820 ms (5%) 208.41 KiB (1%) 1463
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 23.876 ms (5%) 57.89 MiB (1%) 85729
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 8.683 ms (5%) 19.56 MiB (1%) 30630
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 7.912 ms (5%) 14.59 MiB (1%) 37537
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 26.763 ms (5%) 59.05 MiB (1%) 169761
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 7.648 ms (5%) 14.83 MiB (1%) 36616
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 21.115 ms (5%) 47.32 MiB (1%) 60306
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 4.073 s (5%) 1.056 s 2.67 GiB (1%) 10408617
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.517 ms (5%) 5.96 MiB (1%) 8805
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 3.847 ms (5%) 7.67 MiB (1%) 34102
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 12.224 ms (5%) 25.77 MiB (1%) 37042
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 43.664 ms (5%) 2.468 ms 93.17 MiB (1%) 71495
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 22.863 ms (5%) 53.93 MiB (1%) 48243
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 2.250 ms (5%) 10.41 MiB (1%) 34135
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 577.994 ms (5%) 34.962 ms 325.65 MiB (1%) 1650653
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 129.674 ms (5%) 58.84 MiB (1%) 700819
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 165.510 ms (5%) 69.61 MiB (1%) 953200
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 785.283 ms (5%) 51.508 ms 293.48 MiB (1%) 4116367
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 162.021 ms (5%) 69.76 MiB (1%) 821003
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 141.712 ms (5%) 72.90 MiB (1%) 834475
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 484.872 s (5%) 5.095 s 37.34 GiB (1%) 113504773
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 13.301 ms (5%) 11.29 MiB (1%) 105144
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 101.662 ms (5%) 47.00 MiB (1%) 516188
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 61.748 ms (5%) 34.96 MiB (1%) 377023
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 253.692 ms (5%) 12.834 ms 146.61 MiB (1%) 996224
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 192.875 ms (5%) 7.931 ms 103.20 MiB (1%) 867356
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 145.427 ms (5%) 2.729 ms 152.13 MiB (1%) 452555

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      20094 s          0 s        883 s      52201 s          0 s
       #2  2605 MHz      24810 s          0 s        893 s      47495 s          0 s
       #3  2445 MHz      20521 s          0 s        936 s      51721 s          0 s
       #4  3242 MHz      18016 s          0 s        988 s      54182 s          0 s
  Memory: 15.606491088867188 GB (12117.48828125 MB free)
  Uptime: 7332.35 sec
  Load Avg:  1.02  1.03  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 16 Aug 2024 - 23:44
  • Package commit: 792c90
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 408.620 ms (5%) 1.61 MiB (1%) 12345
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 11.429 ms (5%) 357.02 KiB (1%) 2387
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 21.752 ms (5%) 275.33 KiB (1%) 1929
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 463.051 ms (5%) 974.12 KiB (1%) 6740
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 13.516 ms (5%) 120.89 KiB (1%) 799
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 36.037 ms (5%) 275.33 KiB (1%) 1929
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 915.084 s (5%) 83.193 ms 228.35 MiB (1%) 1904100
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 1.127 ms (5%) 5.57 MiB (1%) 385
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 408.783 ms (5%) 9.123 ms 199.53 MiB (1%) 1061125
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 20.734 ms (5%) 206.59 KiB (1%) 1278
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 76.406 ms (5%) 614.27 KiB (1%) 4403
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 75.326 ms (5%) 810.83 KiB (1%) 5893
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.884 ms (5%) 92.41 KiB (1%) 853
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 53.611 ms (5%) 328.34 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 41.593 ms (5%) 328.34 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 76.542 ms (5%) 335.45 KiB (1%) 2458
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 17.344 s (5%) 84.746 ms 197.78 MiB (1%) 1466003
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 24.410 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 64.457 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 8.816 ms (5%) 201.25 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 63.632 ms (5%) 336.22 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 74.550 ms (5%) 336.22 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.700 ms (5%) 115.50 KiB (1%) 796
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 17.112 s (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 36.118 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 18.620 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.665 ms (5%) 81.27 KiB (1%) 466
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 70.662 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 366.863 ms (5%) 1.82 MiB (1%) 13963
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 11.604 ms (5%) 208.36 KiB (1%) 1462
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 29.921 ms (5%) 57.39 MiB (1%) 84308
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 10.758 ms (5%) 19.35 MiB (1%) 29558
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 10.366 ms (5%) 14.32 MiB (1%) 35260
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 32.000 ms (5%) 56.39 MiB (1%) 144849
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 8.654 ms (5%) 14.83 MiB (1%) 36606
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 25.478 ms (5%) 46.82 MiB (1%) 55779
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 14.620 s (5%) 71.655 ms 2.19 GiB (1%) 5922030
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.464 ms (5%) 5.96 MiB (1%) 8795
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 3.901 ms (5%) 7.02 MiB (1%) 30130
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 12.044 ms (5%) 24.85 MiB (1%) 30413
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 49.955 ms (5%) 92.98 MiB (1%) 70419
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 29.483 ms (5%) 53.40 MiB (1%) 44238
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 2.218 ms (5%) 10.38 MiB (1%) 34124
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 585.626 ms (5%) 30.866 ms 325.16 MiB (1%) 1649232
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 130.652 ms (5%) 58.63 MiB (1%) 699747
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 166.033 ms (5%) 69.34 MiB (1%) 950923
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 814.254 ms (5%) 290.81 MiB (1%) 4091455
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 160.167 ms (5%) 69.71 MiB (1%) 819997
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 139.846 ms (5%) 72.40 MiB (1%) 829948
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 516.383 s (5%) 2.897 s 36.86 GiB (1%) 109018186
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 14.768 ms (5%) 11.29 MiB (1%) 105134
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 103.334 ms (5%) 46.36 MiB (1%) 512288
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 61.625 ms (5%) 33.95 MiB (1%) 368894
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 255.364 ms (5%) 7.386 ms 146.43 MiB (1%) 995148
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 194.506 ms (5%) 8.051 ms 102.67 MiB (1%) 863351
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 145.035 ms (5%) 152.10 MiB (1%) 452544

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3227 MHz      29180 s          0 s       1193 s      76896 s          0 s
       #2  3242 MHz      35006 s          0 s       1210 s      71080 s          0 s
       #3  2445 MHz      28973 s          0 s       1287 s      77014 s          0 s
       #4  2445 MHz      24462 s          0 s       1366 s      81451 s          0 s
  Memory: 15.606491088867188 GB (12691.55859375 MB free)
  Uptime: 10746.94 sec
  Load Avg:  1.1  1.04  1.01
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.85
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@amontoison amontoison changed the title Support acyclic coloring Support acyclic coloring for sparse Hessians Aug 17, 2024
Copy link

codecov bot commented Aug 17, 2024

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 94.90%. Comparing base (eb9006c) to head (b5b9424).
Report is 15 commits behind head on main.

Additional details and impacted files
@@            Coverage Diff             @@
##             main     #294      +/-   ##
==========================================
- Coverage   95.28%   94.90%   -0.38%     
==========================================
  Files          13       13              
  Lines        1463     1571     +108     
==========================================
+ Hits         1394     1491      +97     
- Misses         69       80      +11     

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

@amontoison amontoison merged commit 58d2b78 into main Aug 17, 2024
38 of 45 checks passed
@amontoison amontoison deleted the new-coloring branch August 17, 2024 04:09
Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmarks:
    • Target: 17 Aug 2024 - 05:38
    • Baseline: 17 Aug 2024 - 06:36
  • Package commits:
    • Target: 304c04
    • Baseline: 792c90
  • Julia commits:
    • Target: 48d4fd
    • Baseline: 48d4fd
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 0.88 (5%) ✅ 1.00 (1%)
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 1.06 (5%) ❌ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 1.06 (5%) ❌ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 1.07 (5%) ❌ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 1.58 (5%) ❌ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 1.07 (5%) ❌ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 1.08 (5%) ❌ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.08 (5%) ❌ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 1.09 (5%) ❌ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 0.90 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Target

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      22237 s          0 s        867 s      54860 s          0 s
       #2  2445 MHz      22145 s          0 s        962 s      54861 s          0 s
       #3  3258 MHz      21456 s          0 s        888 s      55617 s          0 s
       #4  3241 MHz      21778 s          0 s        914 s      55284 s          0 s
  Memory: 15.606491088867188 GB (12439.0234375 MB free)
  Uptime: 7810.61 sec
  Load Avg:  1.02  1.04  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2610 MHz      31082 s          2 s       1194 s      80388 s          0 s
       #2  2445 MHz      31124 s          0 s       1342 s      80214 s          0 s
       #3  2445 MHz      30099 s          0 s       1194 s      81381 s          0 s
       #4  3242 MHz      30101 s          0 s       1287 s      81299 s          0 s
  Memory: 15.606491088867188 GB (12754.5703125 MB free)
  Uptime: 11286.77 sec
  Load Avg:  1.08  1.02  1.01
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 17 Aug 2024 - 5:38
  • Package commit: 304c04
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 407.177 ms (5%) 1.61 MiB (1%) 12345
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 11.216 ms (5%) 357.02 KiB (1%) 2387
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 21.560 ms (5%) 275.33 KiB (1%) 1929
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 460.829 ms (5%) 974.12 KiB (1%) 6740
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 13.541 ms (5%) 120.89 KiB (1%) 799
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 37.519 ms (5%) 275.33 KiB (1%) 1929
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 913.834 s (5%) 122.796 ms 228.35 MiB (1%) 1904100
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 606.618 μs (5%) 5.57 MiB (1%) 385
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 424.674 ms (5%) 13.179 ms 199.53 MiB (1%) 1061125
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 18.705 ms (5%) 206.59 KiB (1%) 1278
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 74.970 ms (5%) 614.27 KiB (1%) 4403
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 75.110 ms (5%) 810.83 KiB (1%) 5893
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.880 ms (5%) 92.41 KiB (1%) 853
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 48.885 ms (5%) 328.34 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 41.416 ms (5%) 328.34 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 73.227 ms (5%) 335.45 KiB (1%) 2458
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 18.549 s (5%) 86.163 ms 197.78 MiB (1%) 1466003
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 24.243 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 64.671 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 8.696 ms (5%) 201.25 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 63.804 ms (5%) 336.22 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 75.000 ms (5%) 336.22 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.684 ms (5%) 115.50 KiB (1%) 796
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 17.090 s (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 36.081 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 18.588 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.814 ms (5%) 81.27 KiB (1%) 466
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 70.981 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 367.433 ms (5%) 1.82 MiB (1%) 13963
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 11.696 ms (5%) 208.36 KiB (1%) 1462
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 24.239 ms (5%) 57.39 MiB (1%) 84308
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 8.884 ms (5%) 19.35 MiB (1%) 29558
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 8.221 ms (5%) 14.32 MiB (1%) 35260
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 26.248 ms (5%) 56.39 MiB (1%) 144849
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 7.854 ms (5%) 14.83 MiB (1%) 36606
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 21.541 ms (5%) 46.82 MiB (1%) 55779
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 19.928 s (5%) 74.284 ms 2.19 GiB (1%) 5922030
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.506 ms (5%) 5.96 MiB (1%) 8795
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 3.478 ms (5%) 7.02 MiB (1%) 30130
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 11.999 ms (5%) 24.85 MiB (1%) 30413
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 42.671 ms (5%) 2.442 ms 92.98 MiB (1%) 70419
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 22.153 ms (5%) 53.40 MiB (1%) 44238
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 2.413 ms (5%) 10.38 MiB (1%) 34124
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 591.550 ms (5%) 34.136 ms 325.16 MiB (1%) 1649232
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 130.852 ms (5%) 58.63 MiB (1%) 699747
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 164.230 ms (5%) 69.34 MiB (1%) 950923
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 799.060 ms (5%) 73.049 ms 290.81 MiB (1%) 4091455
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 162.223 ms (5%) 69.77 MiB (1%) 820993
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 142.372 ms (5%) 72.40 MiB (1%) 829948
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 610.405 s (5%) 2.946 s 36.86 GiB (1%) 109018186
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 13.427 ms (5%) 11.29 MiB (1%) 105134
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 102.438 ms (5%) 46.36 MiB (1%) 512288
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 61.254 ms (5%) 34.04 MiB (1%) 370394
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 253.136 ms (5%) 6.864 ms 146.43 MiB (1%) 995148
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 190.756 ms (5%) 7.058 ms 102.67 MiB (1%) 863351
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 148.688 ms (5%) 2.620 ms 152.10 MiB (1%) 452544

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      22237 s          0 s        867 s      54860 s          0 s
       #2  2445 MHz      22145 s          0 s        962 s      54861 s          0 s
       #3  3258 MHz      21456 s          0 s        888 s      55617 s          0 s
       #4  3241 MHz      21778 s          0 s        914 s      55284 s          0 s
  Memory: 15.606491088867188 GB (12439.0234375 MB free)
  Uptime: 7810.61 sec
  Load Avg:  1.02  1.04  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 17 Aug 2024 - 6:36
  • Package commit: 792c90
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 407.644 ms (5%) 1.61 MiB (1%) 12345
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 11.336 ms (5%) 357.02 KiB (1%) 2387
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 21.608 ms (5%) 275.33 KiB (1%) 1929
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 464.884 ms (5%) 974.12 KiB (1%) 6740
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 13.463 ms (5%) 120.89 KiB (1%) 799
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 37.574 ms (5%) 275.33 KiB (1%) 1929
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 914.277 s (5%) 75.634 ms 228.35 MiB (1%) 1904100
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 689.874 μs (5%) 5.57 MiB (1%) 385
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 413.640 ms (5%) 9.320 ms 199.53 MiB (1%) 1061125
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 18.609 ms (5%) 206.59 KiB (1%) 1278
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 74.434 ms (5%) 614.27 KiB (1%) 4403
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 75.350 ms (5%) 810.83 KiB (1%) 5893
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.882 ms (5%) 92.41 KiB (1%) 853
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 48.860 ms (5%) 328.34 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 41.546 ms (5%) 328.34 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 73.126 ms (5%) 335.45 KiB (1%) 2458
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 17.522 s (5%) 197.78 MiB (1%) 1466003
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 24.219 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 66.747 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 8.815 ms (5%) 201.25 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 63.303 ms (5%) 336.22 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 73.704 ms (5%) 336.22 KiB (1%) 2464
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.685 ms (5%) 115.50 KiB (1%) 796
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 17.143 s (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 36.181 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 18.497 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.806 ms (5%) 81.27 KiB (1%) 466
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 71.446 ms (5%) 209.12 KiB (1%) 1468
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 365.096 ms (5%) 1.82 MiB (1%) 13963
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 11.640 ms (5%) 208.36 KiB (1%) 1462
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 23.086 ms (5%) 57.39 MiB (1%) 84308
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 8.345 ms (5%) 19.35 MiB (1%) 29558
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 7.694 ms (5%) 14.32 MiB (1%) 35260
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 26.119 ms (5%) 56.39 MiB (1%) 144849
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 7.502 ms (5%) 14.83 MiB (1%) 36606
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 20.606 ms (5%) 46.82 MiB (1%) 55779
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 12.627 s (5%) 77.209 ms 2.19 GiB (1%) 5922030
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.449 ms (5%) 5.96 MiB (1%) 8795
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 3.422 ms (5%) 7.02 MiB (1%) 30130
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 11.252 ms (5%) 24.85 MiB (1%) 30413
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 39.447 ms (5%) 92.98 MiB (1%) 70419
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 21.969 ms (5%) 53.40 MiB (1%) 44238
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 2.224 ms (5%) 10.38 MiB (1%) 34124
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 580.030 ms (5%) 34.296 ms 325.16 MiB (1%) 1649232
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 129.032 ms (5%) 58.63 MiB (1%) 699747
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 166.487 ms (5%) 69.34 MiB (1%) 950923
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 798.209 ms (5%) 86.090 ms 290.81 MiB (1%) 4091455
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 162.026 ms (5%) 69.71 MiB (1%) 819997
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 141.646 ms (5%) 72.40 MiB (1%) 829948
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 558.734 s (5%) 2.757 s 36.86 GiB (1%) 109018186
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 14.934 ms (5%) 11.29 MiB (1%) 105134
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 102.625 ms (5%) 46.36 MiB (1%) 512288
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 61.567 ms (5%) 33.95 MiB (1%) 368894
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 247.261 ms (5%) 7.744 ms 146.43 MiB (1%) 995148
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 192.609 ms (5%) 7.039 ms 102.67 MiB (1%) 863351
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 151.256 ms (5%) 2.711 ms 152.10 MiB (1%) 452544

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2610 MHz      31082 s          2 s       1194 s      80388 s          0 s
       #2  2445 MHz      31124 s          0 s       1342 s      80214 s          0 s
       #3  2445 MHz      30099 s          0 s       1194 s      81381 s          0 s
       #4  3242 MHz      30101 s          0 s       1287 s      81299 s          0 s
  Memory: 15.606491088867188 GB (12754.5703125 MB free)
  Uptime: 11286.77 sec
  Load Avg:  1.08  1.02  1.01
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.86
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant