Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Basis number system swap #205

Merged
merged 8 commits into from
Oct 4, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,12 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [0.15.17] unreleased
mateuszbaran marked this conversation as resolved.
Show resolved Hide resolved

### Changed

* **Mildly breaking**: the number system parameter now corresponds to the coefficients standing in front of basis vectors in a linear combination instead of components of a vector. For example, `DefaultOrthonormalBasis() == DefaultOrthonormalBasis(ℝ)` of `DefaultManifold(3, field=ℂ)` now has 6 vectors, and `DefaultOrthonormalBasis(ℂ)` of the same manifold has 3 basis vectors.

## [0.15.16] 13/09/2024

### Changed
Expand Down
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "ManifoldsBase"
uuid = "3362f125-f0bb-47a3-aa74-596ffd7ef2fb"
authors = ["Seth Axen <[email protected]>", "Mateusz Baran <[email protected]>", "Ronny Bergmann <[email protected]>", "Antoine Levitt <[email protected]>"]
version = "0.15.16"
version = "0.15.17"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand Down
12 changes: 10 additions & 2 deletions ext/ManifoldsBaseQuaternionsExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,13 @@ module ManifoldsBaseQuaternionsExt

if isdefined(Base, :get_extension)
using ManifoldsBase
using ManifoldsBase: ℍ
using ManifoldsBase: ℍ, QuaternionNumbers
using Quaternions
else
# imports need to be relative for Requires.jl-based workflows:
# https://github.com/JuliaArrays/ArrayInterface.jl/pull/387
using ..ManifoldsBase
using ..ManifoldsBase: ℍ
using ..ManifoldsBase: ℍ, QuaternionNumbers
using ..Quaternions
end

Expand All @@ -20,4 +20,12 @@ end
return QuaternionF64
end

@inline function ManifoldsBase.coordinate_eltype(
::AbstractManifold,
p,
𝔽::QuaternionNumbers,
)
return quat(number_eltype(p))
end

end
43 changes: 21 additions & 22 deletions src/DefaultManifold.jl
Original file line number Diff line number Diff line change
Expand Up @@ -65,34 +65,33 @@ embed!(::DefaultManifold, Y, p, X) = copyto!(Y, X)

exp!(::DefaultManifold, q, p, X) = (q .= p .+ X)

function get_basis_orthonormal(::DefaultManifold, p, N::RealNumbers)
return CachedBasis(
DefaultOrthonormalBasis(N),
[_euclidean_basis_vector(p, i) for i in eachindex(p)],
)
end
function get_basis_orthogonal(::DefaultManifold, p, N::RealNumbers)
return CachedBasis(
DefaultOrthogonalBasis(N),
[_euclidean_basis_vector(p, i) for i in eachindex(p)],
)
end
function get_basis_default(::DefaultManifold, p, N::RealNumbers)
return CachedBasis(
DefaultBasis(N),
[_euclidean_basis_vector(p, i) for i in eachindex(p)],
for fname in [:get_basis_orthonormal, :get_basis_orthogonal, :get_basis_default]
BD = Dict(
:get_basis_orthonormal => :DefaultOrthonormalBasis,
:get_basis_orthogonal => :DefaultOrthogonalBasis,
:get_basis_default => :DefaultBasis,
)
BT = BD[fname]
@eval function $fname(::DefaultManifold{ℝ}, p, N::RealNumbers)
return CachedBasis($BT(N), [_euclidean_basis_vector(p, i) for i in eachindex(p)])
end
@eval function $fname(::DefaultManifold{ℂ}, p, N::ComplexNumbers)
return CachedBasis(
$BT(N),
[_euclidean_basis_vector(p, i, real) for i in eachindex(p)],
)
end
end
function get_basis_diagonalizing(M::DefaultManifold, p, B::DiagonalizingOrthonormalBasis)
vecs = get_vectors(M, p, get_basis(M, p, DefaultOrthonormalBasis()))
eigenvalues = zeros(real(eltype(p)), manifold_dimension(M))
return CachedBasis(B, DiagonalizingBasisData(B.frame_direction, eigenvalues, vecs))
end

# Complex manifold, real basis -> coefficients c are complesx -> reshape
# Complex manifold, real basis -> coefficients c are complex -> reshape
# Real manifold, real basis -> reshape
function get_coordinates_orthonormal!(M::DefaultManifold, c, p, X, ::RealNumbers)
return copyto!(c, reshape(X, number_of_coordinates(M, )))
function get_coordinates_orthonormal!(M::DefaultManifold, c, p, X, N::AbstractNumbers)
return copyto!(c, reshape(X, number_of_coordinates(M, N)))
end
function get_coordinates_diagonalizing!(
M::DefaultManifold,
Expand All @@ -103,11 +102,11 @@ function get_coordinates_diagonalizing!(
)
return copyto!(c, reshape(X, number_of_coordinates(M, ℝ)))
end
function get_coordinates_orthonormal!(::DefaultManifold, c, p, X, ::ComplexNumbers)
function get_coordinates_orthonormal!(::DefaultManifold{ℂ}, c, p, X, ::RealNumbers)
m = length(X)
return copyto!(c, [reshape(real(X), m); reshape(imag(X), m)])
end
function get_vector_orthonormal!(M::DefaultManifold, Y, p, c, ::RealNumbers)
function get_vector_orthonormal!(M::DefaultManifold, Y, p, c, ::AbstractNumbers)
return copyto!(Y, reshape(c, representation_size(M)))
end
function get_vector_diagonalizing!(
Expand All @@ -119,7 +118,7 @@ function get_vector_diagonalizing!(
)
return copyto!(Y, reshape(c, representation_size(M)))
end
function get_vector_orthonormal!(M::DefaultManifold{ℂ}, Y, p, c, ::ComplexNumbers)
function get_vector_orthonormal!(M::DefaultManifold{ℂ}, Y, p, c, ::RealNumbers)
n = div(length(c), 2)
return copyto!(Y, reshape(c[1:n] + c[(n + 1):(2n)] * 1im, representation_size(M)))
end
Expand Down
89 changes: 43 additions & 46 deletions src/bases.jl
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ Abstract type that represents a basis of vector space of type `VST` on a manifol
a subset of it.

The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used
for the vectors elements.
as coefficients in linear combinations of the basis vectors.

# See also

Expand All @@ -63,7 +63,7 @@ An arbitrary basis of vector space of type `VST` on a manifold. This will usuall
be the fastest basis available for a manifold.

The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used
for the vectors elements.
as coefficients in linear combinations of the basis vectors.

# See also

Expand All @@ -89,7 +89,7 @@ Abstract type that represents an orthonormal basis of vector space of type `VST`
manifold or a subset of it.

The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used
for the vectors elements.
as coefficients in linear combinations of the basis vectors.

# See also

Expand All @@ -104,7 +104,7 @@ An arbitrary orthogonal basis of vector space of type `VST` on a manifold. This
be the fastest orthogonal basis available for a manifold.

The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used
for the vectors elements.
as coefficients in linear combinations of the basis vectors.

# See also

Expand Down Expand Up @@ -137,7 +137,7 @@ Abstract type that represents an orthonormal basis of vector space of type `VST`
manifold or a subset of it.

The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used
for the vectors elements.
as coefficients in linear combinations of the basis vectors.

# See also

Expand All @@ -153,7 +153,7 @@ An arbitrary orthonormal basis of vector space of type `VST` on a manifold. This
be the fastest orthonormal basis available for a manifold.

The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used
for the vectors elements.
as coefficients in linear combinations of the basis vectors.

# See also

Expand Down Expand Up @@ -184,7 +184,7 @@ of the ambient space projected onto the subspace representing the tangent space
at a given point.

The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used
for the vectors elements.
as coefficients in linear combinations of the basis vectors.

Available methods:
- `:gram_schmidt` uses a modified Gram-Schmidt orthonormalization.
Expand All @@ -205,6 +205,7 @@ end
An orthonormal basis obtained from a basis.

# Constructor

GramSchmidtOrthonormalBasis(𝔽::AbstractNumbers = ℝ)
"""
struct GramSchmidtOrthonormalBasis{𝔽} <: AbstractOrthonormalBasis{𝔽,TangentSpaceType} end
Expand All @@ -218,7 +219,7 @@ An orthonormal basis `Ξ` as a vector of tangent vectors (of length determined b
tensor ``R(u,v)w`` and where the direction `frame_direction` ``v`` has curvature `0`.

The type parameter `𝔽` denotes the [`AbstractNumbers`](@ref) that will be used
for the vectors elements.
as coefficients in linear combinations of the basis vectors.

# Constructor

Expand Down Expand Up @@ -302,15 +303,15 @@ function allocate_result(
f::typeof(get_coordinates),
p,
X,
basis::AbstractBasis,
)
T = allocate_result_type(M, f, (p, X))
basis::AbstractBasis{𝔽},
) where {𝔽}
T = coordinate_eltype(M, p, 𝔽)
return allocate_coordinates(M, p, T, number_of_coordinates(M, basis))
end

@inline function allocate_result_type(
M::AbstractManifold,
f::Union{typeof(get_coordinates),typeof(get_vector)},
f::typeof(get_vector),
args::Tuple{Any,Vararg{Any}},
)
apf = allocation_promotion_function(M, f, args)
Expand Down Expand Up @@ -361,18 +362,17 @@ function combine_allocation_promotion_functions(::typeof(identity), ::typeof(com
end

"""
coordinate_eltype(M::AbstractManifold{M𝔽}, p, 𝔽::AbstractNumbers) where {M𝔽}
coordinate_eltype(M::AbstractManifold, p, 𝔽::AbstractNumbers)

Get the element type for 𝔽-field coordinates of the tangent space at a point `p` from
manifold `M`. This default assumes that usually complex bases of complex manifolds have
real coordinates but it can be overridden by a more specific method.
"""
@inline function coordinate_eltype(::AbstractManifold{M𝔽}, p, 𝔽::AbstractNumbers) where {M𝔽}
if M𝔽 === 𝔽
return real(number_eltype(p))
else
return number_eltype(p)
end
@inline function coordinate_eltype(::AbstractManifold, p, 𝔽::ComplexNumbers)
return complex(number_eltype(p))
end
@inline function coordinate_eltype(::AbstractManifold, p, ::RealNumbers)
return real(number_eltype(p))
end

@doc raw"""
Expand Down Expand Up @@ -406,15 +406,17 @@ function _dual_basis(
return DefaultOrthonormalBasis{𝔽}(TangentSpaceType())
end

function _euclidean_basis_vector(p::StridedArray, i)
X = zero(p)
# if `p` has complex eltype but you'd like to have real basis vectors,
# you can pass `real` as a third argument to get that
function _euclidean_basis_vector(p::StridedArray, i, eltype_transform = identity)
X = zeros(eltype_transform(eltype(p)), size(p)...)
X[i] = 1
return X
end
function _euclidean_basis_vector(p, i)
function _euclidean_basis_vector(p, i, eltype_transform = identity)
# when p is for example a SArray
X = similar(p)
copyto!(X, zero(p))
X = similar(p, eltype_transform(eltype(p)))
fill!(X, zero(eltype(X)))
X[i] = 1
return X
end
Expand Down Expand Up @@ -559,8 +561,8 @@ function _get_coordinates(M::AbstractManifold, p, X, B::DefaultOrthonormalBasis)
return get_coordinates_orthonormal(M, p, X, number_system(B))
end
function get_coordinates_orthonormal(M::AbstractManifold, p, X, N)
Y = allocate_result(M, get_coordinates, p, X, DefaultOrthonormalBasis(N))
return get_coordinates_orthonormal!(M, Y, p, X, N)
c = allocate_result(M, get_coordinates, p, X, DefaultOrthonormalBasis(N))
return get_coordinates_orthonormal!(M, c, p, X, N)
end

function _get_coordinates(M::AbstractManifold, p, X, B::DiagonalizingOrthonormalBasis)
Expand All @@ -572,8 +574,8 @@ function get_coordinates_diagonalizing(
X,
B::DiagonalizingOrthonormalBasis,
)
Y = allocate_result(M, get_coordinates, p, X, B)
return get_coordinates_diagonalizing!(M, Y, p, X, B)
c = allocate_result(M, get_coordinates, p, X, B)
return get_coordinates_diagonalizing!(M, c, p, X, B)
end

function _get_coordinates(M::AbstractManifold, p, X, B::CachedBasis)
Expand All @@ -585,7 +587,7 @@ function get_coordinates_cached(
p,
X,
B::CachedBasis,
::RealNumbers,
::ComplexNumbers,
)
return map(vb -> conj(inner(M, p, X, vb)), get_vectors(M, p, B))
end
Expand All @@ -595,7 +597,7 @@ function get_coordinates_cached(
p,
X,
C::CachedBasis,
::𝔽,
::RealNumbers,
) where {𝔽}
return map(vb -> real(inner(M, p, X, vb)), get_vectors(M, p, C))
end
Expand Down Expand Up @@ -644,7 +646,7 @@ function get_coordinates_cached!(
p,
X,
B::CachedBasis,
::RealNumbers,
::ComplexNumbers,
)
map!(vb -> conj(inner(M, p, X, vb)), Y, get_vectors(M, p, B))
return Y
Expand All @@ -656,7 +658,7 @@ function get_coordinates_cached!(
p,
X,
C::CachedBasis,
::𝔽,
::RealNumbers,
) where {𝔽}
map!(vb -> real(inner(M, p, X, vb)), Y, get_vectors(M, p, C))
return Y
Expand Down Expand Up @@ -939,26 +941,22 @@ For array manifolds, this converts a vector representation of the tangent
vector to an array representation. The [`vee`](@ref) map is the `hat` map's
inverse.
"""
@inline hat(M::AbstractManifold, p, X) =
get_vector(M, p, X, VeeOrthogonalBasis(number_system(M)))
@inline hat!(M::AbstractManifold, Y, p, X) =
get_vector!(M, Y, p, X, VeeOrthogonalBasis(number_system(M)))
@inline hat(M::AbstractManifold, p, X) = get_vector(M, p, X, VeeOrthogonalBasis(ℝ))
@inline hat!(M::AbstractManifold, Y, p, X) = get_vector!(M, Y, p, X, VeeOrthogonalBasis(ℝ))

"""
number_of_coordinates(M::AbstractManifold{𝔽}, B::AbstractBasis)
number_of_coordinates(M::AbstractManifold{𝔽}, ::𝔾)
number_of_coordinates(M::AbstractManifold, B::AbstractBasis)
number_of_coordinates(M::AbstractManifold, ::𝔾)

Compute the number of coordinates in basis of field type `𝔾` on a manifold `M`.
This also corresponds to the number of vectors represented by `B`,
or stored within `B` in case of a [`CachedBasis`](@ref).
"""
function number_of_coordinates(M::AbstractManifold{𝔽}, ::AbstractBasis{𝔾}) where {𝔽,𝔾}
function number_of_coordinates(M::AbstractManifold, ::AbstractBasis{𝔾}) where {𝔾}
return number_of_coordinates(M, 𝔾)
end
function number_of_coordinates(M::AbstractManifold{𝔽}, f::𝔾) where {𝔽,𝔾}
# for odd manifolds this first case has to match.
(real_dimension(𝔽) == real_dimension(f)) && return manifold_dimension(M)
return div(manifold_dimension(M), real_dimension(𝔽)) * real_dimension(f)
function number_of_coordinates(M::AbstractManifold, f::𝔾) where {𝔾}
return div(manifold_dimension(M), real_dimension(f))
end

"""
Expand Down Expand Up @@ -1084,8 +1082,7 @@ For array manifolds, this converts an array representation of the tangent
vector to a vector representation. The [`hat`](@ref) map is the `vee` map's
inverse.
"""
vee(M::AbstractManifold, p, X) =
get_coordinates(M, p, X, VeeOrthogonalBasis(number_system(M)))
vee(M::AbstractManifold, p, X) = get_coordinates(M, p, X, VeeOrthogonalBasis(ℝ))
function vee!(M::AbstractManifold, Y, p, X)
return get_coordinates!(M, Y, p, X, VeeOrthogonalBasis(number_system(M)))
return get_coordinates!(M, Y, p, X, VeeOrthogonalBasis())
end
Loading
Loading