Skip to content

Commit

Permalink
Fix documentation.
Browse files Browse the repository at this point in the history
  • Loading branch information
kellertuer committed Oct 11, 2023
1 parent 183f1dd commit 151e152
Show file tree
Hide file tree
Showing 2 changed files with 20 additions and 1 deletion.
19 changes: 19 additions & 0 deletions src/TangentSpace.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,25 @@ const TangentSpace{𝔽,M} = Fiber{𝔽,TangentSpaceType,M} where {𝔽,M<:Abstr

TangentSpace(M::AbstractManifold, p) = Fiber(M, p, TangentSpaceType())

@doc raw"""
CotangentSpace{𝔽,M} = Fiber{𝔽,CotangentSpaceType,M} where {𝔽,M<:AbstractManifold{𝔽}}
A manifold for the Cotangent space ``T^*_p\mathcal M`` at a point ``p\in\mathcal M``.
This is modelled as an alias for [`VectorSpaceFiber`](@ref) corresponding to
[`CotangentSpaceType`](@ref).
# Constructor
CotangentSpace(M::AbstractManifold, p)
Return the manifold (vector space) representing the cotangent space ``T^*_p\mathcal M``
at point `p`, ``p\in\mathcal M``.
"""
const CotangentSpace{𝔽,M} = Fiber{𝔽,CotangentSpaceType,M} where {𝔽,M<:AbstractManifold{𝔽}}

CotangentSpace(M::AbstractManifold, p) = Fiber(M, p, CotangentSpaceType())

Check warning on line 36 in src/TangentSpace.jl

View check run for this annotation

Codecov / codecov/patch

src/TangentSpace.jl#L36

Added line #L36 was not covered by tests


function allocate_result(M::TangentSpace, ::typeof(rand))
return zero_vector(M.manifold, M.point)
end
Expand Down
2 changes: 1 addition & 1 deletion src/retractions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ end
@doc raw"""
struct SasakiRetraction <: AbstractRetractionMethod end
Exponential map on [`TangentBundle`](@ref) computed via Euler integration as described
Exponential map on [`TangentBundle`](https://juliamanifolds.github.io/Manifolds.jl/stable/manifolds/vector_bundle.html#Manifolds.TangentBundle) computed via Euler integration as described
in [MuralidharanFletcher:2012](@cite). The system of equations for ``\gamma : ℝ \to T\mathcal M`` such that
``\gamma(1) = \exp_{p,X}(X_M, X_F)`` and ``\gamma(0)=(p, X)`` reads
Expand Down

0 comments on commit 151e152

Please sign in to comment.