Skip to content

Commit

Permalink
Add atol to addmul tests (#56210)
Browse files Browse the repository at this point in the history
This avoids the issues as in
https://github.com/JuliaLang/julia/issues/55781 and
https://github.com/JuliaLang/julia/issues/55779 where we compare small
numbers using a relative tolerance. Also, in this PR, I have added an
extra test, so now we compare both `A * B * alpha + C * beta` and `A * B
* alpha - C * beta` with the corresponding in-place versions. The idea
is that if the terms `A * B * alpha` and ` C * beta` have similar
magnitudes, at least one of the two expressions will usually result in a
large enough number that may be compared using a relative tolerance.

I am unsure if the `atol` chosen here is optimal, as I have ballparked
it to use the maximum `eps` by looking at all the `eltype`s involved.

Fixes #55781
Fixes #55779
  • Loading branch information
jishnub authored Oct 30, 2024
1 parent c0ce290 commit db6e95e
Showing 1 changed file with 39 additions and 30 deletions.
69 changes: 39 additions & 30 deletions stdlib/LinearAlgebra/test/addmul.jl
Original file line number Diff line number Diff line change
Expand Up @@ -130,6 +130,29 @@ for cmat in mattypes,
push!(testdata, (cmat{celt}, amat{aelt}, bmat{belt}))
end

strongzero(α) = iszero(α) ? false : α
function compare_matmul(C, A, B, α, β,
rtol = max(rtoldefault.(real.(eltype.((C, A, B))))...,
rtoldefault.(real.(typeof.((α, β))))...);
Ac = collect(A), Bc = collect(B), Cc = collect(C))
@testset let A=A, B=B, C=C, α=α, β=β
Ccopy = copy(C)
returned_mat = mul!(Ccopy, A, B, α, β)
@test returned_mat === Ccopy
atol = max(maximum(epsrealfloateltype, (C,A,B)),
maximum(epsrealfloattypeof, (α,β)))
exp_val = Ac * Bc * strongzero(α) + Cc * strongzero(β)
@test collect(returned_mat) exp_val rtol=rtol atol=atol
rtol_match = isapprox(collect(returned_mat), exp_val, rtol=rtol)
if !(rtol_match || β isa Bool || isapprox(β, 0, atol=eps(typeof(β))))
negβ = -β
returned_mat = mul!(copy(C), A, B, α, negβ)
exp_val = Ac * Bc * strongzero(α) + Cc * negβ
@test collect(returned_mat) exp_val rtol=rtol atol=atol
end
end
end

@testset "mul!(::$TC, ::$TA, ::$TB, α, β)" for (TC, TA, TB) in testdata
if needsquare(TA)
na1 = na2 = rand(sizecandidates)
Expand All @@ -147,32 +170,29 @@ end
bsize = (na2, nb2)
csize = (na1, nb2)

C = _rand(TC, csize)
A = _rand(TA, asize)
B = _rand(TB, bsize)
Cc = Matrix(C)
Ac = Matrix(A)
Bc = Matrix(B)

@testset for α in Any[true, eltype(TC)(1), _rand(eltype(TC))],
β in Any[false, eltype(TC)(0), _rand(eltype(TC))]

C = _rand(TC, csize)
A = _rand(TA, asize)
B = _rand(TB, bsize)

# This is similar to how `isapprox` choose `rtol` (when
# `atol=0`) but consider all number types involved:
rtol = max(rtoldefault.(real.(eltype.((C, A, B))))...,
rtoldefault.(real.(typeof.((α, β))))...)

Cc = copy(C)
Ac = Matrix(A)
Bc = Matrix(B)
returned_mat = mul!(C, A, B, α, β)
@test returned_mat === C
@test collect(returned_mat) α * Ac * Bc + β * Cc rtol=rtol
compare_matmul(C, A, B, α, β, rtol; Ac, Bc, Cc)

y = C[:, 1]
x = B[:, 1]
yc = Vector(y)
xc = Vector(x)
returned_vec = mul!(y, A, x, α, β)
@test returned_vec === y
@test collect(returned_vec) α * Ac * xc + β * yc rtol=rtol
compare_matmul(y, A, x, α, β, rtol; Ac, Bc=xc, Cc=yc)

if TC <: Matrix
@testset "adjoint and transpose" begin
Expand All @@ -183,35 +203,24 @@ end
Af = fa === identity ? A : fa(_rand(TA, reverse(asize)))
Bf = fb === identity ? B : fb(_rand(TB, reverse(bsize)))

Ac = collect(Af)
Bc = collect(Bf)
Cc = collect(C)

returned_mat = mul!(C, Af, Bf, α, β)
@test returned_mat === C
@test collect(returned_mat) α * Ac * Bc + β * Cc rtol=rtol
compare_matmul(C, Af, Bf, α, β, rtol)
end
end
end

if isnanfillable(C)
@testset "β = 0 ignores C .= NaN" begin
parent(C) .= NaN
Ac = Matrix(A)
Bc = Matrix(B)
returned_mat = mul!(C, A, B, α, zero(eltype(C)))
@test returned_mat === C
@test collect(returned_mat) α * Ac * Bc rtol=rtol
Ccopy = copy(C)
parent(Ccopy) .= NaN
compare_matmul(Ccopy, A, B, α, zero(eltype(C)), rtol; Ac, Bc, Cc)
end
end

if isnanfillable(A)
@testset "α = 0 ignores A .= NaN" begin
parent(A) .= NaN
Cc = copy(C)
returned_mat = mul!(C, A, B, zero(eltype(A)), β)
@test returned_mat === C
@test collect(returned_mat) β * Cc rtol=rtol
Acopy = copy(A)
parent(Acopy) .= NaN
compare_matmul(C, Acopy, B, zero(eltype(A)), β, rtol; Ac, Bc, Cc)
end
end
end
Expand Down

0 comments on commit db6e95e

Please sign in to comment.