Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

increase accuracy of power iterations and remove flag normalize_rho #86

Merged
merged 1 commit into from
Jun 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 6 additions & 12 deletions src/FISTA.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ mutable struct FISTA{rT <: Real, vecT <: Union{AbstractVector{rT}, AbstractVecto
end

"""
FISTA(A; AHA=A'*A, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), rho=0.95, normalize_rho=true, theta=1, relTol=eps(real(eltype(AHA))), iterations=50, restart = :none, verbose = false)
FISTA( ; AHA=, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), rho=0.95, normalize_rho=true, theta=1, relTol=eps(real(eltype(AHA))), iterations=50, restart = :none, verbose = false)
FISTA(A; AHA=A'*A, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), iterations=50, verbose = false, rho = 0.95 / power_iterations(AHA), theta=1, relTol=eps(real(eltype(AHA))), restart = :none)
FISTA( ; AHA=, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), iterations=50, verbose = false, rho = 0.95 / power_iterations(AHA), theta=1, relTol=eps(real(eltype(AHA))), restart = :none)

creates a `FISTA` object for the forward operator `A` or normal operator `AHA`.

Expand All @@ -37,8 +37,7 @@ creates a `FISTA` object for the forward operator `A` or normal operator `AHA`.
* `precon` - preconditionner for the internal CG algorithm
* `reg::AbstractParameterizedRegularization` - regularization term; can also be a vector of regularization terms
* `normalizeReg::AbstractRegularizationNormalization` - regularization normalization scheme; options are `NoNormalization()`, `MeasurementBasedNormalization()`, `SystemMatrixBasedNormalization()`
* `rho::Real` - step size for gradient step
* `normalize_rho::Bool` - normalize step size by the largest eigenvalue of `AHA`
* `rho::Real` - step size for gradient step; the default is `0.95 / max_eigenvalue` as determined with power iterations.
* `theta::Real` - parameter for predictor-corrector step
* `relTol::Real` - tolerance for stopping criterion
* `iterations::Int` - maximum number of iterations
Expand All @@ -53,13 +52,12 @@ function FISTA(A
; AHA = A'*A
, reg = L1Regularization(zero(real(eltype(AHA))))
, normalizeReg = NoNormalization()
, rho = 0.95
, normalize_rho = true
, iterations = 50
, verbose = false
, rho = 0.95 / power_iterations(AHA; verbose)
, theta = 1
, relTol = eps(real(eltype(AHA)))
, iterations = 50
, restart = :none
, verbose = false
)

T = eltype(AHA)
Expand All @@ -71,10 +69,6 @@ function FISTA(A
res = similar(x)
res[1] = Inf # avoid spurious convergence in first iterations

if normalize_rho
rho /= abs(power_iterations(AHA))
end

# Prepare regularization terms
reg = isa(reg, AbstractVector) ? reg : [reg]
indices = findsinks(AbstractProjectionRegularization, reg)
Expand Down
17 changes: 6 additions & 11 deletions src/OptISTA.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,8 @@ mutable struct OptISTA{rT <: Real, vecT <: Union{AbstractVector{rT}, AbstractVec
end

"""
OptISTA(A; AHA=A'*A, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), rho=0.95, normalize_rho=true, theta=1, relTol=eps(real(eltype(AHA))), iterations=50, verbose = false)
OptISTA( ; AHA=, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), rho=0.95, normalize_rho=true, theta=1, relTol=eps(real(eltype(AHA))), iterations=50, verbose = false)
OptISTA(A; AHA=A'*A, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), iterations=50, verbose = false, rho=0.95 / power_iterations(AHA), theta=1, relTol=eps(real(eltype(AHA))))
OptISTA( ; AHA=, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), iterations=50, verbose = false, rho=0.95 / power_iterations(AHA), theta=1, relTol=eps(real(eltype(AHA))))

creates a `OptISTA` object for the forward operator `A` or normal operator `AHA`. OptISTA has a 2x better worst-case bound than FISTA, but actual performance varies by application. It stores 2 extra intermediate variables the size of the image compared to FISTA.

Expand All @@ -44,8 +44,7 @@ OR
* `AHA` - normal operator is optional if `A` is supplied
* `reg::AbstractParameterizedRegularization` - regularization term
* `normalizeReg::AbstractRegularizationNormalization` - regularization normalization scheme; options are `NoNormalization()`, `MeasurementBasedNormalization()`, `SystemMatrixBasedNormalization()`
* `rho::Real` - step size for gradient step
* `normalize_rho::Bool` - normalize step size by the largest eigenvalue of `AHA`
* `rho::Real` - step size for gradient step; the default is `0.95 / max_eigenvalue` as determined with power iterations.
* `theta::Real` - parameter for predictor-corrector step
* `relTol::Real` - tolerance for stopping criterion
* `iterations::Int` - maximum number of iterations
Expand All @@ -59,12 +58,11 @@ function OptISTA(A
; AHA = A'*A
, reg = L1Regularization(zero(real(eltype(AHA))))
, normalizeReg = NoNormalization()
, rho = 0.95
, normalize_rho = true
, theta = 1
, relTol = eps(real(eltype(AHA)))
, iterations = 50
, verbose = false
, rho = 0.95 / power_iterations(AHA; verbose)
, theta = 1
, relTol = eps(real(eltype(AHA)))
)

T = eltype(AHA)
Expand All @@ -78,9 +76,6 @@ function OptISTA(A
res = similar(x)
res[1] = Inf # avoid spurious convergence in first iterations

if normalize_rho
rho /= abs(power_iterations(AHA))
end
θn = 1
for _ = 1:(iterations-1)
θn = (1 + sqrt(1 + 4 * θn^2)) / 2
Expand Down
18 changes: 6 additions & 12 deletions src/POGM.jl
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,8 @@ mutable struct POGM{rT<:Real,vecT<:Union{AbstractVector{rT},AbstractVector{Compl
end

"""
POGM(A; AHA = A'*A, reg = L1Regularization(zero(real(eltype(AHA)))), normalizeReg = NoNormalization(), rho = 0.95, normalize_rho = true, theta = 1, sigma_fac = 1, relTol = eps(real(eltype(AHA))), iterations = 50, restart = :none, verbose = false)
POGM( ; AHA = , reg = L1Regularization(zero(real(eltype(AHA)))), normalizeReg = NoNormalization(), rho = 0.95, normalize_rho = true, theta = 1, sigma_fac = 1, relTol = eps(real(eltype(AHA))), iterations = 50, restart = :none, verbose = false)
POGM(A; AHA = A'*A, reg = L1Regularization(zero(real(eltype(AHA)))), normalizeReg = NoNormalization(), iterations = 50, verbose = false, rho = 0.95 / power_iterations(AHA), theta = 1, sigma_fac = 1, relTol = eps(real(eltype(AHA))), restart = :none)
POGM( ; AHA = , reg = L1Regularization(zero(real(eltype(AHA)))), normalizeReg = NoNormalization(), iterations = 50, verbose = false, rho = 0.95 / power_iterations(AHA), theta = 1, sigma_fac = 1, relTol = eps(real(eltype(AHA))), restart = :none)

Creates a `POGM` object for the forward operator `A` or normal operator `AHA`. POGM has a 2x better worst-case bound than FISTA, but actual performance varies by application. It stores 3 extra intermediate variables the size of the image compared to FISTA. Only gradient restart scheme is implemented for now.

Expand All @@ -56,8 +56,7 @@ Creates a `POGM` object for the forward operator `A` or normal operator `AHA`. P
* `AHA` - normal operator is optional if `A` is supplied
* `reg::AbstractParameterizedRegularization` - regularization term
* `normalizeReg::AbstractRegularizationNormalization` - regularization normalization scheme; options are `NoNormalization()`, `MeasurementBasedNormalization()`, `SystemMatrixBasedNormalization()`
* `rho::Real` - step size for gradient step
* `normalize_rho::Bool` - normalize step size by the largest eigenvalue of `AHA`
* `rho::Real` - step size for gradient step; the default is `0.95 / max_eigenvalue` as determined with power iterations.
* `theta::Real` - parameter for predictor-corrector step
* `sigma_fac::Real` - parameter for decreasing γ-momentum ∈ [0,1]
* `relTol::Real` - tolerance for stopping criterion
Expand All @@ -73,14 +72,13 @@ function POGM(A
; AHA = A'*A
, reg = L1Regularization(zero(real(eltype(AHA))))
, normalizeReg = NoNormalization()
, rho = 0.95
, normalize_rho = true
, iterations = 50
, verbose = false
, rho = 0.95 / power_iterations(AHA; verbose)
, theta = 1
, sigma_fac = 1
, relTol = eps(real(eltype(AHA)))
, iterations = 50
, restart = :none
, verbose = false
)

T = eltype(AHA)
Expand All @@ -95,10 +93,6 @@ function POGM(A
res = similar(x)
res[1] = Inf # avoid spurious convergence in first iterations

if normalize_rho
rho /= abs(power_iterations(AHA))
end

reg = isa(reg, AbstractVector) ? reg : [reg]
indices = findsinks(AbstractProjectionRegularization, reg)
other = [reg[i] for i in indices]
Expand Down
2 changes: 1 addition & 1 deletion src/RegularizedLeastSquares.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ using StatsBase
using LinearOperatorCollection
using InteractiveUtils

export AbstractLinearSolver, createLinearSolver, init, deinit, solve!, linearSolverList, linearSolverListReal, applicableSolverList
export AbstractLinearSolver, createLinearSolver, init, deinit, solve!, linearSolverList, linearSolverListReal, applicableSolverList, power_iterations

abstract type AbstractLinearSolver end

Expand Down
10 changes: 5 additions & 5 deletions src/Utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -242,22 +242,22 @@ function nrmsd(I,Ireco)
end

"""
power_iterations(AᴴA; rtol=1e-2, maxiter=30, verbose=false)
power_iterations(AᴴA; rtol=1e-3, maxiter=30, verbose=false)

Power iterations to determine the maximum eigenvalue of a normal operator or square matrix.

# Arguments
* `AᴴA` - operator or matrix; has to be square

# Keyword Arguments
* `rtol=1e-2` - relative tolerance; function terminates if the change of the max. eigenvalue is smaller than this values
* `rtol=1e-3` - relative tolerance; function terminates if the change of the max. eigenvalue is smaller than this values
* `maxiter=30` - maximum number of power iterations
* `verbose=false` - print maximum eigenvalue if `true`

# Output
maximum eigenvalue of the operator
"""
function power_iterations(AᴴA; rtol=1e-2, maxiter=30, verbose=false)
function power_iterations(AᴴA; rtol=1e-3, maxiter=30, verbose=false)
b = randn(eltype(AᴴA), size(AᴴA,2))
bᵒˡᵈ = similar(b)
λ = Inf
Expand All @@ -273,8 +273,8 @@ function power_iterations(AᴴA; rtol=1e-2, maxiter=30, verbose=false)
mul!(b, AᴴA, bᵒˡᵈ)

λᵒˡᵈ = λ
λ = (bᵒˡᵈ' * b) / (bᵒˡᵈ' * bᵒˡᵈ)
verbose && println("iter = $i; λ = $λ")
λ = abs(bᵒˡᵈ' * b) # λ is real-valued for Hermitian matrices
verbose && println("iter = $i; λ = $λ; abs(λ/λᵒˡᵈ - 1) = $(abs(λ/λᵒˡᵈ - 1)) <? $rtol")
abs(λ/λᵒˡᵈ - 1) < rtol && return λ
end

Expand Down
Loading