-
Notifications
You must be signed in to change notification settings - Fork 34
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
General out indices #511
base: master
Are you sure you want to change the base?
General out indices #511
Conversation
ah right, the doctests need to be updated. That brings me to a question: The signature has suffered a bit. Should I implement a |
Codecov ReportPatch coverage:
Additional details and impacted files@@ Coverage Diff @@
## master #511 +/- ##
==========================================
- Coverage 94.16% 90.47% -3.69%
==========================================
Files 52 52
Lines 1387 1397 +10
==========================================
- Hits 1306 1264 -42
- Misses 81 133 +52
☔ View full report in Codecov by Sentry. |
Funnily enough I managed to break the |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I can't immediately assess how useful this generalization generally is, beyond this one specific use case (which could maybe just use Int
s as well?).
src/mokernels/moinput.jl
Outdated
@@ -24,10 +24,17 @@ The first `out_dim` elements represent all outputs for the first input, the seco | |||
|
|||
See [Inputs for Multiple Outputs](@ref) in the docs for more info. | |||
""" | |||
struct MOInputIsotopicByFeatures{S,T<:AbstractVector{S},Tout_dim<:Integer} <: | |||
AbstractVector{Tuple{S,Int}} | |||
struct MOInputIsotopicByFeatures{ |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Changing the type parameters is a breaking change.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
really? :/
Whenever the output index is not linear, you are asking people to convert from a complicated index to a linear index and then back. And since you only want to pass that index on to the (custom) kernel, I don't see a reason why you would want indices to be necessarily integers. EDIT: Also maybe you have a model with 4 output dimensions and are only interested in dimensions 1,2 and 4. So you always want those 3 dimension. At the moment you are out of luck. But with this implementation: julia> KernelFunctions.MOInputIsotopicByFeatures(randn(3), [1,2,4])
9-element KernelFunctions.MOInputIsotopicByFeatures{Float64, Vector{Float64}, Int64, Vector{Int64}}:
(-1.4941865719611502, 1)
(-1.4941865719611502, 2)
(-1.4941865719611502, 4)
(0.11666968472865669, 1)
(0.11666968472865669, 2)
(0.11666968472865669, 4)
(-0.8766600791223175, 1)
(-0.8766600791223175, 2)
(-0.8766600791223175, 4) and come on this is cool: KernelFunctions.MOInputIsotopicByFeatures(rand(3), Partial.([1,2]))
6-element KernelFunctions.MOInputIsotopicByFeatures{Float64, Vector{Float64}, Partial{1}, Vector{Partial{1}}}:
(0.5167325185126124, ∂₁)
(0.5167325185126124, ∂₂)
(0.8288121708373749, ∂₁)
(0.8288121708373749, ∂₂)
(0.10051090052303036, ∂₁)
(0.10051090052303036, ∂₂) |
Thinking about this more: What we are essentially implementing here is a lazy version of collect(Iterators.product(x, 1:n)) but with random access in contrast to I am thinking that the best idea might be to implement such a lazy random access product. |
using MappedArrays: mappedarray
function ensure_all_linear_indexed(vecs::T) where {T<:Tuple}
linear_indexed = ntuple(
n -> hasmethod(Base.getindex, (fieldtype(T, n), Int)),
Base._counttuple(T)
)
all(linear_indexed) || throw(ArgumentError(
"$(vecs[findfirst(x->!x, linear_indexed)]) cannot be linearly accessed. All inputs need to implement `Base.getindex(::T, ::Int)`"
))
end
function product(vectors...)
ensure_all_linear_indexed(vectors)
indices = CartesianIndices(ntuple(n -> axes(vec(vectors[n]), 1), length(vectors)))
return mappedarray(indices) do idx
return ntuple(n -> vec(vectors[n])[idx[n]], length(vectors))
end
end
function multi_out_byFeatures(positions, out_dims)
return vec(PermutedDimsArray(product(positions, 1:out_dims), (2, 1)))
end
function multi_out_byOutput(positions, out_dims)
return vec(product(positions, 1:out_dims))
end using this we get julia> multi_out_byFeatures(rand(3), 4)
12-element reshape(PermutedDimsArray(mappedarray(var"#18#21"{Tuple{Vector{Float64}, UnitRange{Int64}}}(([0.5128788077506103, 0.9930607101821788, 0.026060857585934016], 1:4)), ::CartesianIndices{2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}), (2, 1)), 12)
with eltype Tuple{Float64, Int64}:
(0.5128788077506103, 1)
(0.5128788077506103, 2)
(0.5128788077506103, 3)
(0.5128788077506103, 4)
(0.9930607101821788, 1)
(0.9930607101821788, 2)
(0.9930607101821788, 3)
(0.9930607101821788, 4)
(0.026060857585934016, 1)
(0.026060857585934016, 2)
(0.026060857585934016, 3)
(0.026060857585934016, 4)
julia> dump(ans)
Base.ReshapedArray{Tuple{Float64, Int64}, 1, PermutedDimsArray{Tuple{Float64, Int64}, 2, (2, 1), (2, 1), MappedArrays.ReadonlyMappedArray{Tuple{Float64, Int64}, 2, CartesianIndices{2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}, var"#18#21"{Tuple{Vector{Float64}, UnitRange{Int64}}}}}, Tuple{Base.MultiplicativeInverses.SignedMultiplicativeInverse{Int64}}}
parent: PermutedDimsArray{Tuple{Float64, Int64}, 2, (2, 1), (2, 1), MappedArrays.ReadonlyMappedArray{Tuple{Float64, Int64}, 2, CartesianIndices{2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}, var"#18#21"{Tuple{Vector{Float64}, UnitRange{Int64}}}}}
parent: MappedArrays.ReadonlyMappedArray{Tuple{Float64, Int64}, 2, CartesianIndices{2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}, var"#18#21"{Tuple{Vector{Float64}, UnitRange{Int64}}}}
f: #18 (function of type var"#18#21"{Tuple{Vector{Float64}, UnitRange{Int64}}})
vectors: Tuple{Vector{Float64}, UnitRange{Int64}}
1: Array{Float64}((3,)) [0.5128788077506103, 0.9930607101821788, 0.026060857585934016]
2: UnitRange{Int64}
start: Int64 1
stop: Int64 4
data: CartesianIndices{2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}
indices: Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}
1: Base.OneTo{Int64}
stop: Int64 3
2: Base.OneTo{Int64}
stop: Int64 4
dims: Tuple{Int64}
1: Int64 12
mi: Tuple{Base.MultiplicativeInverses.SignedMultiplicativeInverse{Int64}}
1: Base.MultiplicativeInverses.SignedMultiplicativeInverse{Int64}
divisor: Int64 4
multiplier: Int64 -9223372036854775807
addmul: Int8 1
shift: UInt8 0x01 but julia> vec(product(rand(3), 4:5, [:a,:b]))
12-element reshape(mappedarray(var"#18#21"{Tuple{Vector{Float64}, UnitRange{Int64}, Vector{Symbol}}}(([0.20611586943058768, 0.9207289691001196, 0.8953528265724665], 4:5, [:a, :b])), ::CartesianIndices{3, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}, Base.OneTo{Int64}}}), 12) with eltype Tuple{Float64, Int64, Symbol}:
(0.20611586943058768, 4, :a)
(0.9207289691001196, 4, :a)
(0.8953528265724665, 4, :a)
(0.20611586943058768, 5, :a)
(0.9207289691001196, 5, :a)
(0.8953528265724665, 5, :a)
(0.20611586943058768, 4, :b)
(0.9207289691001196, 4, :b)
(0.8953528265724665, 4, :b)
(0.20611586943058768, 5, :b)
(0.9207289691001196, 5, :b)
(0.8953528265724665, 5, :b) what do you think about this approach? |
I really like the idea in this PR. Questions that arise for me are:
From the snipped above with mappedarrays it seems you generate the entire 3x4 vector? This could also be implemented lazily, right? As a dependency, |
No julia> CartesianIndices((1:3, 2:5))
CartesianIndices((1:3, 2:5))
julia> CartesianIndices((1:3, 2:5)) |> collect
3×4 Matrix{CartesianIndex{2}}:
CartesianIndex(1, 2) CartesianIndex(1, 3) CartesianIndex(1, 4) CartesianIndex(1, 5)
CartesianIndex(2, 2) CartesianIndex(2, 3) CartesianIndex(2, 4) CartesianIndex(2, 5)
CartesianIndex(3, 2) CartesianIndex(3, 3) CartesianIndex(3, 4) CartesianIndex(3, 5) only that The dump shows you the storage requirements. At the moment MOInputs would only store the So in essense this adds an O(1) storage cost of 3 Integers + the |
yup julia> v
4-element ColVecs{Float64, Matrix{Float64}, SubArray{Float64, 1, Matrix{Float64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}}:
[0.19579198021872568, 0.9198508840591844, 0.23464204616834705]
[0.8852398907666711, 0.8745129006689075, 0.009698185376639912]
[0.638932589563104, 0.0116582676328858, 0.20495759713303108]
[0.853294669961563, 0.9731349258823672, 0.8970732821094968]
julia> multi_out_byOutput(v, 4)
16-element reshape(mappedarray(var"#6#9"{Tuple{ColVecs{Float64, Matrix{Float64}, SubArray{Float64, 1, Matrix{Float64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}}, UnitRange{Int64}}}((SubArray{Float64, 1, Matrix{Float64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}[[0.19579198021872568, 0.9198508840591844, 0.23464204616834705], [0.8852398907666711, 0.8745129006689075, 0.009698185376639912], [0.638932589563104, 0.0116582676328858, 0.20495759713303108], [0.853294669961563, 0.9731349258823672, 0.8970732821094968]], 1:4)), ::CartesianIndices{2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}), 16) with eltype Tuple{SubArray{Float64, 1, Matrix{Float64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}, Int64}:
([0.19579198021872568, 0.9198508840591844, 0.23464204616834705], 1)
([0.8852398907666711, 0.8745129006689075, 0.009698185376639912], 1)
([0.638932589563104, 0.0116582676328858, 0.20495759713303108], 1)
([0.853294669961563, 0.9731349258823672, 0.8970732821094968], 1)
([0.19579198021872568, 0.9198508840591844, 0.23464204616834705], 2)
([0.8852398907666711, 0.8745129006689075, 0.009698185376639912], 2)
([0.638932589563104, 0.0116582676328858, 0.20495759713303108], 2)
([0.853294669961563, 0.9731349258823672, 0.8970732821094968], 2)
([0.19579198021872568, 0.9198508840591844, 0.23464204616834705], 3)
([0.8852398907666711, 0.8745129006689075, 0.009698185376639912], 3)
([0.638932589563104, 0.0116582676328858, 0.20495759713303108], 3)
([0.853294669961563, 0.9731349258823672, 0.8970732821094968], 3)
([0.19579198021872568, 0.9198508840591844, 0.23464204616834705], 4)
([0.8852398907666711, 0.8745129006689075, 0.009698185376639912], 4)
([0.638932589563104, 0.0116582676328858, 0.20495759713303108], 4)
([0.853294669961563, 0.9731349258823672, 0.8970732821094968], 4) |
Since I already addressed storage size (O(1) increase of less than 6*64bit). Now to the access performance: So whenever feature = @inbounds inp.x[feature_index]
return feature, output_index but since return ntuple(n -> vec(vectors[n])[idx[n]], length(vectors)) inside of product. return (vec(vectors[1])[idx[1]], vec(vectors[2])[idx[2]]) additionally So essentially the same happens with the caveat that you need to lookup your output axis if it can be more general than |
Continuing to go through this and thinking about the original motivation for this: How would this combine derivatives (encoded by symbols corresponding to differentiating by the n-th component of first/second argument) and multi-outputs (currently encoded with integers)? |
I would encode it as julia> vec(product( v, 1:out_dim, Partial.([1,2]))) i.e. a third coordinate ([0.19579198021872568, 0.9198508840591844, 0.23464204616834705], 1, ∂1)
([0.8852398907666711, 0.8745129006689075, 0.009698185376639912], 1, ∂1)
([0.638932589563104, 0.0116582676328858, 0.20495759713303108], 1, ∂1)
([0.853294669961563, 0.9731349258823672, 0.8970732821094968], 1, ∂1)
([0.19579198021872568, 0.9198508840591844, 0.23464204616834705], 2, ∂1)
([0.8852398907666711, 0.8745129006689075, 0.009698185376639912], 2, ∂1)
([0.638932589563104, 0.0116582676328858, 0.20495759713303108], 2, ∂1)
⋮
([0.8852398907666711, 0.8745129006689075, 0.009698185376639912], 1, ∂2)
([0.638932589563104, 0.0116582676328858, 0.20495759713303108], 1, ∂2)
([0.853294669961563, 0.9731349258823672, 0.8970732821094968], 1, ∂2)
([0.19579198021872568, 0.9198508840591844, 0.23464204616834705], 2, ∂2)
([0.8852398907666711, 0.8745129006689075, 0.009698185376639912], 2, ∂2)
([0.638932589563104, 0.0116582676328858, 0.20495759713303108], 2, ∂2)
([0.853294669961563, 0.9731349258823672, 0.8970732821094968], 2, ∂2) EDIT: the combination of outputs and Partial derivatives was actually the motivation to think beyond two coordinates and realizing that this is related to |
Since I am still in the prototyping phase ideas change quite a lot, so to avoid spamming this repository with PRs I created a new repository for prototyping: https://github.com/FelixBenning/DifferentiableKernelFunctions.jl I would still be interested in integrating this into KernelFunctions.jl eventually but given the unenthusiastic response to all suggestions in this direction here, it might also just stay that way. @Crown421 I sent you an invite as a collaborator since you seem interested |
I think a generalization of these indices is fine as long as the code complexity does not increase too much (maybe it becomes even simpler?) and performance + AD regressions are avoided. We should also not introduce (new) type piracy and avoid too generic names (KernelFunctions should not own something as generic as (I also assume that the draft above could (should?) be improved, it contains a few non-idiomatic parts.) |
Apologies, I am definitely quite interested. I will check out your repo. |
Since mappedarrays caused issues too at some point I created https://github.com/lazyLibraries/ProductArrays.jl with this you can do julia> A = productArray(1:3, (:a,:b))
3×2 ProductArrays.ProductArray{Tuple{UnitRange{Int64}, Tuple{Symbol, Symbol}}, Tuple{Int64, Symbol}, 2}:
(1, :a) (1, :b)
(2, :a) (2, :b)
(3, :a) (3, :b)
julia> vec(A)
6-element reshape(::ProductArrays.ProductArray{Tuple{UnitRange{Int64}, Tuple{Symbol, Symbol}}, Tuple{Int64, Symbol}, 2}, 6) with eltype Tuple{Int64, Symbol}:
(1, :a)
(2, :a)
(3, :a)
(1, :b)
(2, :b)
(3, :b) with an application of The package should be registered soon JuliaRegistries/General#84683 (I'll also try to add more tests using OffsetArrays and more weird types) but the standards are coverd. |
my comment was not at all directed at you and I was probably unfair to @devmotion too. Thank you for your time. I was a bit emotional about my pet project, sorry. |
Summary
Enable general output indices, e.g. symbols:
The use case for this is going to be derivative operators [:none,$\partial_1$ , ... $\partial_2$ , $\partial_{11}$ ...] cf. #508
Proposed changes
Replace
by
To ensure backwards compatibility introduce a Constructor taking indices
The use of
Base.OneTo
ensures equivalent performance.Breaking changes
None