Update: 2024.03.17
github-actions
released this
19 Aug 12:09
·
0 commits
to 0517122966473103ceef8993311235db9aafaf3e
since this release
📈 Trending Up
Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity.
- cdk (🥇24 · ⭐ 460 · 📈) - The Chemistry Development Kit.
LGPL-2.1
cheminformatics
Java
- AI for Science Resources (🥈14 · ⭐ 360 · 📈) - List of resources for AI4Science research, including learning resources.
GPL-3.0 license
- QH9: A Quantum Hamiltonian Prediction Benchmark (🥈14 · ⭐ 360 · 📈) - Artificial Intelligence Research for Science (AIRS).
CC-BY-NC-SA 4.0
ML-DFT
- Artificial Intelligence for Science (AIRS) (🥉14 · ⭐ 360 · 📈) - Artificial Intelligence Research for Science (AIRS).
GPL-3.0 license
rep-learn
generative
ML-IAP
MD
ML-DFT
ML-WFT
biomolecules
- QHNet (🥈14 · ⭐ 360 · 📈) - Artificial Intelligence Research for Science (AIRS).
GPL-3.0
rep-learn
📉 Trending Down
Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity.
- TorchMD-NET (🥇22 · ⭐ 270 · 📉) - Neural network potentials.
MIT
MD
rep-learn
transformer
pre-trained
- DIG: Dive into Graphs (🥈21 · ⭐ 1.7K · 📉) - A library for graph deep learning research.
GPL-3.0
- mlcolvar (🥈16 · ⭐ 74 · 📉) - A unified framework for machine learning collective variables for enhanced sampling simulations.
MIT
enhanced-sampling
➕ Added Projects
Projects that were recently added to this best-of list.
- pymatviz (🥉17 · ⭐ 78 · ➕) - A toolkit for visualizations in materials informatics.
MIT
general-tool
probabilistic
- FAENet (🥈11 · ⭐ 21 · ➕) -
MIT
- GNoME Explorer (🥉7 · ⭐ 500 · 🐣) - Graph Networks for Materials Exploration Database.
Apache-2
datasets
materials-discovery
- Materials Discovery: GNoME (🥈6 · ⭐ 500 · 🐣) -
Apache-2
r
e
p
-
l
e
a
r
n
,
d
a
t
a
s
e
t
s
- halex (🥉2 · ⭐ 1 · 🐣) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844.
Unlicensed
ML-WFT
excited-states
- TorchMD-NET (🥈20 · ⭐ 220 · ➕) - Neural network potentials based on graph neural networks and equivariant transformers.
MIT
ML-IAP
rep-learn
tranformer
pre-trained
- LLM-Prop (🥉8 · ⭐ 4 · ➕) - A repository for the LLM-Prop implementation.
None found
- MLXDM (🥉7 · ⭐ 4 · 💤) - A Neural Network Potential with Rigorous Treatment of Long-Range Dispersion https://doi.org/10.1039/D2DD00150K.
MIT
long-range
- paper-data-redundancy (🥉7 · ⭐ 3 · 🐣) - Codes and data for the paper On the redundancy in large material datasets: efficient and robust learning with less data.
BSD-3
small-data
single-paper
- paper-ml-robustness-material-property (🥉4 · ⭐ 3 · 💤) -
BSD-3
d
a
t
a
s
e
t
s
,
s
i
n
g
l
e
-
p
a
p
e
r
- Materials Data Facility (MDF) (🥈9 · ⭐ 10 · 💤) - A simple way to publish, discover, and access materials datasets. Publication of very large datasets supported (e.g.,..
Apache-2
- OPTIMADE Python tools (🥇25 · ⭐ 54 · ➕) - Tools for implementing and consuming OPTIMADE APIs in Python.
MIT
- OPTIMADE Tutorial Exercises (🥈8 · ⭐ 11 · ➕) - Tutorial exercises for the OPTIMADE API.
MIT
datasets
- optimade.science (🥉8 · ⭐ 8 · ➕) - A sky-scanner Optimade browser-only GUI.
MIT
datasets
- Does this material exist? (🥉4 · ⭐ 2 · ➕) - Vote on whether you think predicted crystal structures could be synthesised.
MIT
for-fun
materials-discovery
- OPTIMADE providers dashboard (🥉4 · ⭐ 1 · ➕) - A dashboard of known providers.
Unlicensed
- GPUMD (🥇20 · ⭐ 300 · ➕) - GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials..
GPL-3.0
MD
C++
electrostatics
- nep-data (🥉1 · ⭐ 9 · 💀) - Data related to the NEP machine-learned potential of GPUMD.
Unlicensed
ML-IAP
MD
transport-phenomena