Skip to content

2020 DIGIX GLOBAL AI CHALLENGE - Digital Device Image Retrieval - Top2 WEARE队

Notifications You must be signed in to change notification settings

Jierui-Liu/Huawei_DIGIX_ImageRetri_Top2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Huawei_DIGIX_ImgRetri_Top2

2020 DIGIX GLOBAL AI CHALLENGE - Digital Device Image Retrieval - WEARE队 亚军

0. 环境&依赖

环境:

  • Ubuntu 16.04
  • CUDA 10.1 CUDNN 7.6.4
  • 1080Ti or V100
  • 内存128G

本项目所有实验均为单卡运行,使用1080Ti时batchsize改为 8(类)x 4(张)

依赖:

# 训练环境
conda env create -f env.yaml
conda activate pytorch

# 后处理
cd indexing/PyRetri-master
python setup.py install

1. 数据预处理

# 训练数据生成
root_dir="./data" # 数据集所在目录
save_dir="./data" 
patch=640

cd features/utils
python convert_jpg2npy.py -root_dir $root_dir -save_dir $save_dir -patch $patch

2. 文件目录

本项目部分代码参考开源仓库 reid-strong-baselinefast-reidPyRetri

.
├── prepare.sh (依赖包安装、数据预处理)
├── features
│   ├── checkpoints (保存训练过程权重)
│   ├── configs     (配置文件)
│   ├── data
│   ├── engine
│   ├── exp         (特征保存目录)
│   ├── log
│   ├── model
│   ├── README.md
│   ├── solver
│   ├── tools
│   └── utils
├── indexing
│   ├── features
│   ├── index_configs (特征检索配置文件)
│   ├── index_tools
│   ├── PyRetri-master
│   ├── README.md
│   ├── result_tmp    (检索结果保存目录)
│   └── trans_index_json.sh (特征检索启动文件)
└── env.yaml

3. 算法说明

详细方案请见 zhihu

About

2020 DIGIX GLOBAL AI CHALLENGE - Digital Device Image Retrieval - Top2 WEARE队

Topics

Resources

Stars

Watchers

Forks