Skip to content

Pytorch implementation for Semantic Segmentation with multi models (Deeplabv3, Deeplabv3_plus, PSPNet, UNet, UNet_AutoEncoder, UNet_nested, R2AttUNet, AttentionUNet, RecurrentUNet,, SEGNet, CENet, DsenseASPP, RefineNet, RDFNet)

License

Notifications You must be signed in to change notification settings

Jichao-Wang/Pytorch-Segmentation-multi-models

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch-Segmentation-multi-models

Pytorch implementation for Semantic Segmentation with multi models for blood vessel segmentation in fundus images of DRIVE dataset.

Deeplabv3, Deeplabv3_plus, PSPNet, UNet, UNet_AutoEncoder, UNet_nested, R2AttUNet, AttentionUNet, RecurrentUNet, SEGNet, CENet, DsenseASPP, RefineNet, RDFNet

Data

Available at https://www.isi.uu.nl/Research/Databases/DRIVE/

Training

python train.py --model unet

You can modify --model to change models.

Reference:

AttentionR2Unet:

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation https://arxiv.org/abs/1802.06955

AttentionUnet:

Attention U-Net: Learning Where to Look for the Pancreas https://arxiv.org/abs/1804.03999

CENet:

CE-Net: Context encoder network for 2D medical image segmentation https://arxiv.org/abs/1903.02740

DeepLabV3:

Rethinking Atrous Convolution for Semantic Image Segmentation https://arxiv.org/pdf/1706.05587.pdf

DeepLabV3_plus:

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation https://arxiv.org/pdf/1802.02611.pdf

DenseASPP:

DenseASPP for Semantic Segmentation in Street Scenes http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_DenseASPP_for_Semantic_CVPR_2018_paper.pdf

PSPNet:

Pyramid Scene Parsing Network https://arxiv.org/abs/1612.01105

RDFNet:

RDFNet: RGB-D Multi-level Residual Feature Fusion for Indoor Semantic Segmentation

RecurrentUnet:

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation https://arxiv.org/ftp/arxiv/papers/1802/1802.06955.pdf

RefineNet:

RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation https://arxiv.org/pdf/1611.06612.pdf

SegNet:

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation https://arxiv.org/abs/1511.00561

U-Net:

Convolutional Networks for Biomedical Image Segmentation https://arxiv.org/abs/1505.04597

Unet_nested:

Unet++: A Nested U-Net Architecture for Medical Image Segmentation https://arxiv.org/pdf/1807.10165.pdf

Github:

https://github.com/Guzaiwang/CE-N

https://github.com/ShawnBIT/UNet-family

https://github.com/charlesCXK/PyTorch_Semantic_Segmentation

About

Pytorch implementation for Semantic Segmentation with multi models (Deeplabv3, Deeplabv3_plus, PSPNet, UNet, UNet_AutoEncoder, UNet_nested, R2AttUNet, AttentionUNet, RecurrentUNet,, SEGNet, CENet, DsenseASPP, RefineNet, RDFNet)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%