Skip to content

JavisPeng/u_net_liver

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

unet liver

Unet network for liver CT image segmentation

data preparation

structure of project

  --project
  	main.py
  	 --data
   		--train
   		--val

data and trained weight link: https://pan.baidu.com/s/1dgGnsfoSmL1lbOUwyItp6w code: 17yr

all dataset you can access from: https://competitions.codalab.org/competitions/15595

training

python main.py train

testing

load the last saved weight

python main.py test --ckpt=weights_19.pth

数据准备

项目文件分布如下

  --project
  	main.py
  	 --data
   		--train
   		--val

数据和权重可以使用百度云下载 链接:

链接: https://pan.baidu.com/s/1dgGnsfoSmL1lbOUwyItp6w 提取码: 17yr

全部数据集: https://competitions.codalab.org/competitions/15595

模型训练

python main.py train

测试模型训练

加载权重,默认保存最后一个权重

python main.py test --ckpt=weights_19.pth

多类别

修改2个地方即可:unet最后一层的通道数设置为类别数;损失函数使用CrossEntropyLoss

bath_size,img_size,num_classes=2,3,4
#model = Unet(3, num_classes)
criterion = nn.CrossEntropyLoss()
#assume the pred is the output of the model
pred=torch.rand(bath_size,num_classes,img_size,img_size)
target=torch.randint(num_classes,(bath_size,img_size,img_size))
loss=criterion(pred,target)

Demo

liver

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages