Skip to content

Commit

Permalink
Added MCV2. Moved RI and maternal immunity code to separate 'modules'.
Browse files Browse the repository at this point in the history
  • Loading branch information
Jonathan Bloedow committed Jul 31, 2024
1 parent 2dd6520 commit 9a63e13
Show file tree
Hide file tree
Showing 3 changed files with 65 additions and 39 deletions.
17 changes: 17 additions & 0 deletions nnmm/maternal_immunity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
import numpy as np
import numba as nb

def add( model, istart, iend ):
# enable this after adding susceptibility property to the population (see cells below)
model.population.susceptibility[istart:iend] = 0 # newborns have maternal immunity
model.population.susceptibility_timer[istart:iend] = int(0.5*365) # 6 months

# Define the function to decrement susceptibility_timer and update susceptibility
@nb.njit((nb.uint32, nb.uint8[:], nb.uint8[:]), parallel=True)
def _update_susceptibility_based_on_sus_timer(count, susceptibility_timer, susceptibility):
for i in nb.prange(count):
if susceptibility_timer[i] > 0:
susceptibility_timer[i] -= 1
if susceptibility_timer[i] == 0:
susceptibility[i] = 1

45 changes: 6 additions & 39 deletions nnmm/measles.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,6 +176,8 @@ def propagate_population(model, tick):
model.nodes.add_vector_property("births", (model.params.ticks + 364) // 365) # births per year

# Adding ri_timer here since it's referred to in do_births.
import ri
import maternal_immunity as mi
model.population.add_scalar_property("ri_timer", np.uint16)

def do_births(model, tick):
Expand All @@ -195,17 +197,7 @@ def do_births(model, tick):
model.population.dod[istart:iend] = pdsod(model.population.dob[istart:iend], max_year=100) # make use of the fact that dob[istart:iend] is currently 0
model.population.dob[istart:iend] = tick # now update dob to reflect being born today

# Randomly set ri_timer for coverage fraction of agents to a value between 8.5*30.5 and 9.5*30.5 days
# change these numbers or parameterize as needed
ri_timer_values = np.random.uniform(8.5 * 30.5, 9.5 * 30.5, count_births).astype(np.uint16)

# Create a mask to select coverage fraction of agents
# Do coverage by node, not same for every node
# I don't think agents have node ids yet?
mask = np.random.rand(count_births) < (model.nodes.ri_coverages[model.population.nodeid[istart:iend]])

# Set ri_timer values for the selected agents
model.population.ri_timer[istart:iend][mask] = ri_timer_values[mask]
ri.add( model, count_births, istart, iend )

index = istart
nodeids = model.population.nodeid # grab this once for efficiency
Expand All @@ -220,9 +212,7 @@ def do_births(model, tick):
index += births
model.nodes.population[:,tick+1] += todays_births

# enable this after adding susceptibility property to the population (see cells below)
model.population.susceptibility[istart:iend] = 0 # newborns have maternal immunity
model.population.susceptibility_timer[istart:iend] = int(0.5*365) # 6 months
mi.add( model, istart, iend )

return

Expand Down Expand Up @@ -429,36 +419,13 @@ def initialize_susceptibility(count, dob, susceptibility):
# In[555]:


# Define the function to decrement ri_timer and update susceptibility
@nb.njit((nb.uint32, nb.uint16[:], nb.uint8[:]), parallel=True)
def _update_susceptibility_based_on_ri_timer(count, ri_timer, susceptibility):
for i in nb.prange(count):
if ri_timer[i] > 0:
ri_timer[i] -= 1
# TBD: It's perfectly possible that the individual got infected (or recovered) while this timer
# was counting down and we might want to abort the timer.
if ri_timer[i] == 0:
susceptibility[i] = 0

# Example usage
#update_susceptibility_based_on_ri_timer(model.population.count, model.population.ri_timer, model.population.susceptibility)

def do_ri(model, tick):
_update_susceptibility_based_on_ri_timer(model.population.count, model.population.ri_timer, model.population.susceptibility)
ri._update_susceptibility_based_on_ri_timer(model.population.count, model.population.ri_timer, model.population.susceptibility)
return


# Define the function to decrement susceptibility_timer and update susceptibility
@nb.njit((nb.uint32, nb.uint8[:], nb.uint8[:]), parallel=True)
def _update_susceptibility_based_on_sus_timer(count, susceptibility_timer, susceptibility):
for i in nb.prange(count):
if susceptibility_timer[i] > 0:
susceptibility_timer[i] -= 1
if susceptibility_timer[i] == 0:
susceptibility[i] = 1

def do_susceptibility_decay(model, tick):
_update_susceptibility_based_on_sus_timer(model.population.count, model.population.susceptibility_timer, model.population.susceptibility)
mi._update_susceptibility_based_on_sus_timer(model.population.count, model.population.susceptibility_timer, model.population.susceptibility)
return


Expand Down
42 changes: 42 additions & 0 deletions nnmm/ri.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
import numpy as np
import numba as nb

def add( model, count_births, istart, iend ):
# Randomly set ri_timer for coverage fraction of agents to a value between 8.5*30.5 and 9.5*30.5 days
# change these numbers or parameterize as needed
ri_timer_values = np.random.uniform(8.5 * 30.5, 9.5 * 30.5, count_births).astype(np.uint16) # 9mo-ish
# Randomly set ri_timer for the second coverage fraction to a different range
ri_timer_values2 = np.random.uniform(14.5 * 30.5, 15.5 * 30.5, count_births).astype(np.uint16) # 15mo-ish

mask = np.random.rand(count_births) < (model.nodes.ri_coverages[model.population.nodeid[istart:iend]])

# Create a mask to select coverage fraction of agents
# Do coverage by node, not same for every node
# I don't think agents have node ids yet?
# Subdivision mask
subdivision_rand = np.random.rand(mask.sum())

# Create the three groups based on subdivision
group_85 = subdivision_rand < 0.85
group_14_25 = (subdivision_rand >= 0.85) & (subdivision_rand < 0.9925)
group_0_75 = subdivision_rand >= 0.9925

#import pdb
#pdb.set_trace()
# Apply ri_timer_values to 85% of the selected agents
model.population.ri_timer[istart:iend][mask][group_85] = ri_timer_values[mask][group_85]

# Apply ri_timer_values2 to 14.25% of the selected agents
model.population.ri_timer[istart:iend][mask][group_14_25] = ri_timer_values2[mask][group_14_25]

# Define the function to decrement ri_timer and update susceptibility
@nb.njit((nb.uint32, nb.uint16[:], nb.uint8[:]), parallel=True)
def _update_susceptibility_based_on_ri_timer(count, ri_timer, susceptibility):
for i in nb.prange(count):
if ri_timer[i] > 0:
ri_timer[i] -= 1
# TBD: It's perfectly possible that the individual got infected (or recovered) while this timer
# was counting down and we might want to abort the timer.
if ri_timer[i] == 0:
susceptibility[i] = 0

0 comments on commit 9a63e13

Please sign in to comment.