Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2T6S pipeline reproduction #75

Merged
merged 18 commits into from
Sep 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
134 changes: 76 additions & 58 deletions narps_open/pipelines/team_2T6S.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
#!/usr/bin/python
# coding: utf-8

""" Write the work of NARPS' team 2T6S using Nipype """
""" Write the work of NARPS team 2T6S using Nipype """

from os.path import join
from itertools import product
Expand Down Expand Up @@ -78,8 +78,10 @@ def get_subject_infos(event_files, runs):
duration[val].append(float(info[4])) # durations for trial (rpz by RT)
else: # trial with no response : duration of 4 s
duration[val].append(float(4))
weights_gain[val_gain].append(float(info[2])) # weights gain for trial_run1
weights_loss[val_loss].append(-1.0 * float(info[3])) # weights loss for trial_run1
# weights gain for trial_run1
weights_gain[val_gain].append(float(info[2]))
# weights loss for trial_run1
weights_loss[val_loss].append(-1.0 * float(info[3]))

# Bunching is done per run, i.e. trial_run1, trial_run2, etc.
# But names must not have '_run1' etc because we concatenate runs
Expand Down Expand Up @@ -141,11 +143,11 @@ def get_parameters_file(filepaths, subject_id, working_dir):
Return :
- parameters_file : paths to new files containing only desired parameters.
"""
from os import mkdir
from os import makedirs
from os.path import join, isdir

import pandas as pd
import numpy as np
from pandas import read_csv, DataFrame
from numpy import array, transpose

# Handle the case where filepaths is a single path (str)
if not isinstance(filepaths, list):
Expand All @@ -154,21 +156,20 @@ def get_parameters_file(filepaths, subject_id, working_dir):
# Create the parameters files
parameters_file = []
for file_id, file in enumerate(filepaths):
data_frame = pd.read_csv(file, sep = '\t', header=0)
data_frame = read_csv(file, sep = '\t', header=0)

# Extract parameters we want to use for the model
temp_list = np.array([
temp_list = array([
data_frame['X'], data_frame['Y'], data_frame['Z'],
data_frame['RotX'], data_frame['RotY'], data_frame['RotZ']])
retained_parameters = pd.DataFrame(np.transpose(temp_list))
retained_parameters = DataFrame(transpose(temp_list))

# Write parameters to a parameters file
# TODO : warning !!! filepaths must be ordered (1,2,3,4) for the following code to work
new_path =join(working_dir, 'parameters_file',
new_path = join(working_dir, 'parameters_file',
f'parameters_file_sub-{subject_id}_run-{str(file_id + 1).zfill(2)}.tsv')

if not isdir(join(working_dir, 'parameters_file')):
mkdir(join(working_dir, 'parameters_file'))
makedirs(join(working_dir, 'parameters_file'), exist_ok = True)

with open(new_path, 'w') as writer:
writer.write(retained_parameters.to_csv(
Expand All @@ -187,11 +188,11 @@ def remove_gunzip_files(_, subject_id, working_dir):

Parameters:
- _: Node input only used for triggering the Node
- subject_id: str, TODO
- working_id: str, TODO
- subject_id: str, subject id from which to remove the unzipped file
- working_dir: str, path to the working directory
"""
from shutil import rmtree
from os.path import join
from shutil import rmtree

try:
rmtree(join(working_dir, 'l1_analysis', f'_subject_id_{subject_id}', 'gunzip_func'))
Expand All @@ -209,11 +210,11 @@ def remove_smoothed_files(_, subject_id, working_dir):

Parameters:
- _: Node input only used for triggering the Node
- subject_id: str, TODO
- working_id: str, TODO
- subject_id: str, subject id from which to remove the smoothed file
- working_dir: str, path to the working directory
"""
from shutil import rmtree
from os.path import join
from shutil import rmtree

try:
rmtree(join(working_dir, 'l1_analysis', f'_subject_id_{subject_id}', 'smooth'))
Expand All @@ -231,11 +232,7 @@ def get_subject_level_analysis(self):
"""
# Infosource Node - To iterate on subjects
infosource = Node(IdentityInterface(
fields = ['subject_id', 'dataset_dir', 'results_dir', 'working_dir', 'run_list'],
dataset_dir = self.directories.dataset_dir,
results_dir = self.directories.results_dir,
working_dir = self.directories.working_dir,
run_list = self.run_list),
fields = ['subject_id']),
name = 'infosource')
infosource.iterables = [('subject_id', self.subject_list)]

Expand Down Expand Up @@ -275,6 +272,7 @@ def get_subject_level_analysis(self):
input_names = ['event_files', 'runs'],
output_names = ['subject_info']),
name = 'subject_infos')
subject_infos.inputs.runs = self.run_list

# SpecifyModel - generates SPM-specific Model
specify_model = Node(SpecifySPMModel(
Expand Down Expand Up @@ -332,16 +330,13 @@ def get_subject_level_analysis(self):
l1_analysis = Workflow(base_dir = self.directories.working_dir, name = 'l1_analysis')
l1_analysis.connect([
(infosource, selectfiles, [('subject_id', 'subject_id')]),
(infosource, subject_infos, [('run_list', 'runs')]),
(infosource, remove_gunzip_files, [('subject_id', 'subject_id')]),
(infosource, remove_smoothed_files, [('subject_id', 'subject_id')]),
(infosource, parameters, [('subject_id', 'subject_id')]),
(subject_infos, specify_model, [('subject_info', 'subject_info')]),
(contrasts, contrast_estimate, [('contrasts', 'contrasts')]),
(selectfiles, parameters, [('param', 'filepaths')]),
(selectfiles, subject_infos, [('event', 'event_files')]),
(infosource, parameters, [
('subject_id', 'subject_id'),
('working_dir', 'working_dir')]),
(selectfiles, gunzip_func, [('func', 'in_file')]),
(gunzip_func, smooth, [('out_file', 'in_files')]),
(smooth, specify_model, [('smoothed_files', 'functional_runs')]),
Expand Down Expand Up @@ -401,8 +396,10 @@ def get_subset_contrasts(file_list, subject_list, participants_file):
Returns :
- equal_indifference_id : a list of subject ids in the equalIndifference group
- equal_range_id : a list of subject ids in the equalRange group
- equal_indifference_files : a subset of file_list corresponding to subjects in the equalIndifference group
- equal_range_files : a subset of file_list corresponding to subjects in the equalRange group
- equal_indifference_files : a subset of file_list corresponding to
subjects in the equalIndifference group
- equal_range_files : a subset of file_list corresponding to
subjects in the equalRange group
"""
equal_indifference_id = []
equal_range_id = []
Expand Down Expand Up @@ -454,8 +451,7 @@ def get_group_level_analysis_sub_workflow(self, method):
# Infosource - iterate over the list of contrasts
infosource_groupanalysis = Node(
IdentityInterface(
fields = ['contrast_id', 'subjects'],
subjects = self.subject_list),
fields = ['contrast_id', 'subjects']),
name = 'infosource_groupanalysis')
infosource_groupanalysis.iterables = [('contrast_id', self.contrast_list)]

Expand All @@ -469,7 +465,7 @@ def get_group_level_analysis_sub_workflow(self, method):
}

selectfiles_groupanalysis = Node(SelectFiles(
templates, base_directory=self.directories.results_dir, force_list= True),
templates, base_directory = self.directories.results_dir, force_list = True),
name = 'selectfiles_groupanalysis')

# Datasink - save important files
Expand All @@ -481,14 +477,14 @@ def get_group_level_analysis_sub_workflow(self, method):
# Function node get_subset_contrasts - select subset of contrasts
sub_contrasts = Node(Function(
function = self.get_subset_contrasts,
input_names = ['file_list', 'method', 'subject_list', 'participants_file'],
input_names = ['file_list', 'subject_list', 'participants_file'],
output_names = [
'equalIndifference_id',
'equalRange_id',
'equalIndifference_files',
'equalRange_files']),
name = 'sub_contrasts')
sub_contrasts.inputs.method = method
sub_contrasts.inputs.subject_list = self.subject_list

# Estimate model
estimate_model = Node(EstimateModel(
Expand All @@ -513,8 +509,6 @@ def get_group_level_analysis_sub_workflow(self, method):
l2_analysis.connect([
(infosource_groupanalysis, selectfiles_groupanalysis, [
('contrast_id', 'contrast_id')]),
(infosource_groupanalysis, sub_contrasts, [
('subjects', 'subject_list')]),
(selectfiles_groupanalysis, sub_contrasts, [
('contrast', 'file_list'),
('participants', 'participants_file')]),
Expand Down Expand Up @@ -618,29 +612,53 @@ def get_group_level_outputs(self):
return return_list

def get_hypotheses_outputs(self):
""" Return all hypotheses output file names.
Note that hypotheses 5 to 8 correspond to the maps given by the team in their results ;
but they are not fully consistent with the hypotheses definitions as expected by NARPS.
"""
""" Return all hypotheses output file names. """
nb_sub = len(self.subject_list)
files = [
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}', '_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}', '_contrast_id_0002', 'spmT_0001.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}', '_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}', '_contrast_id_0002', 'spmT_0001.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}', '_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}', '_contrast_id_0002', 'spmT_0001.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}', '_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}', '_contrast_id_0002', 'spmT_0001.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}', '_contrast_id_0003', '_threshold1', 'spmT_0002_thr.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}', '_contrast_id_0003', 'spmT_0002.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}', '_contrast_id_0003', '_threshold1', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}', '_contrast_id_0003', 'spmT_0001.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}', '_contrast_id_0003', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}', '_contrast_id_0003', 'spmT_0001.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}', '_contrast_id_0003', '_threshold0', 'spmT_0002_thr.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}', '_contrast_id_0003', 'spmT_0002.nii'),
join(f'l2_analysis_groupComp_nsub_{nb_sub}', '_contrast_id_0003', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_groupComp_nsub_{nb_sub}', '_contrast_id_0003', 'spmT_0001.nii')
# Hypothesis 1
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}',
'_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}',
'_contrast_id_0002', 'spmT_0001.nii'),
# Hypothesis 2
join(f'l2_analysis_equalRange_nsub_{nb_sub}',
'_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}',
'_contrast_id_0002', 'spmT_0001.nii'),
# Hypothesis 3
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}',
'_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}',
'_contrast_id_0002', 'spmT_0001.nii'),
# Hypothesis 4
join(f'l2_analysis_equalRange_nsub_{nb_sub}',
'_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}',
'_contrast_id_0002', 'spmT_0001.nii'),
# Hypothesis 5
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}',
'_contrast_id_0003', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}',
'_contrast_id_0003', 'spmT_0001.nii'),
# Hypothesis 6
join(f'l2_analysis_equalRange_nsub_{nb_sub}',
'_contrast_id_0003', '_threshold1', 'spmT_0002_thr.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}',
'_contrast_id_0003', 'spmT_0002.nii'),
# Hypothesis 7
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}',
'_contrast_id_0003', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_equalIndifference_nsub_{nb_sub}',
'_contrast_id_0003', 'spmT_0001.nii'),
# Hypothesis 8
join(f'l2_analysis_equalRange_nsub_{nb_sub}',
'_contrast_id_0003', '_threshold1', 'spmT_0002_thr.nii'),
join(f'l2_analysis_equalRange_nsub_{nb_sub}',
'_contrast_id_0003', 'spmT_0002.nii'),
# Hypothesis 9
join(f'l2_analysis_groupComp_nsub_{nb_sub}',
'_contrast_id_0003', '_threshold0', 'spmT_0001_thr.nii'),
join(f'l2_analysis_groupComp_nsub_{nb_sub}',
'_contrast_id_0003', 'spmT_0001.nii')
]
return [join(self.directories.output_dir, f) for f in files]
2 changes: 1 addition & 1 deletion narps_open/utils/configuration/testing_config.toml
Original file line number Diff line number Diff line change
Expand Up @@ -19,4 +19,4 @@ neurovault_naming = true # true if results files are saved using the neurovault
[testing]

[testing.pipelines]
correlation_thresholds = [0.30, 0.70, 0.80, 0.85, 0.93] # Correlation between reproduced hypotheses files and results, respectively for [20, 40, 60, 80, 108] subjects.
correlation_thresholds = [0.30, 0.70, 0.79, 0.85, 0.93] # Correlation between reproduced hypotheses files and results, respectively for [20, 40, 60, 80, 108] subjects.