Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[6VV2] Reproduction #37

Open
wants to merge 11 commits into
base: main
Choose a base branch
from
  •  
  •  
  •  
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
[
[
"command",
[
"/home/jlefortb/narps_open_pipelines/narps_open/pipelines/team_6VV2.firstlevel",
"d24bc0377b166d70c1e7e74f97b48e4b"
]
],
[
"data_dir",
"/home/jlefortb/narps_open_pipelines/data/original/ds001734/"
],
[
"function_str",
"def run(command, results_dir, subject, data_dir):\n import subprocess\n subject= \"sub-{}\".format(subject)\n subprocess.run([command, results_dir, subject, data_dir])\n print(\"Done\")\n"
],
[
"results_dir",
"/home/jlefortb/narps_open_pipelines/data/results/derived/team_6VV2_afni/firstlevel/"
],
[
"subject",
"001"
]
]
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
Node: afni_proc (utility)
=========================


Hierarchy : Afni_proc_through_nipype.afni_proc
Exec ID : afni_proc.a070


Original Inputs
---------------


* command : /home/jlefortb/narps_open_pipelines/narps_open/pipelines/team_6VV2.firstlevel
* data_dir : /home/jlefortb/narps_open_pipelines/data/original/ds001734/
* function_str : def run(command, results_dir, subject, data_dir):
import subprocess
subject= "sub-{}".format(subject)
subprocess.run([command, results_dir, subject, data_dir])
print("Done")

* results_dir : /home/jlefortb/narps_open_pipelines/data/results/derived/team_6VV2_afni/firstlevel/
* subject : 001

Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
[
[
"data_dir",
"/home/jlefortb/narps_open_pipelines/data/original/ds001734/"
],
[
"function_str",
"def create_stimuli_file(subject, data_dir):\n # create 1D stimuli file :\n import pandas as pd \n from os.path import join as opj\n df_run1 = pd.read_csv(opj(data_dir, \"sub-{}/func/sub-{}_task-MGT_run-01_events.tsv\".format(subject, subject)), sep=\"\\t\")\n df_run1 = df_run1[[\"onset\", \"gain\", \"loss\"]].T\n df_run2 = pd.read_csv(opj(data_dir, \"sub-{}/func/sub-{}_task-MGT_run-02_events.tsv\".format(subject, subject)), sep=\"\\t\")\n df_run2 = df_run2[[\"onset\", \"gain\", \"loss\"]].T\n df_run3 = pd.read_csv(opj(data_dir, \"sub-{}/func/sub-{}_task-MGT_run-03_events.tsv\".format(subject, subject)), sep=\"\\t\")\n df_run3 = df_run3[[\"onset\", \"gain\", \"loss\"]].T\n df_run4 = pd.read_csv(opj(data_dir, \"sub-{}/func/sub-{}_task-MGT_run-04_events.tsv\".format(subject, subject)), sep=\"\\t\")\n df_run4 = df_run4[[\"onset\", \"gain\", \"loss\"]].T\n\n df_gain = pd.DataFrame(index=range(0,4), columns=range(0,64))\n df_gain.loc[0] = [\"{}*{}\".format(df_run1[col].loc['onset'], df_run1[col].loc['gain']) for col in range(0, 64)]\n df_gain.loc[1] = [\"{}*{}\".format(df_run2[col].loc['onset'], df_run2[col].loc['gain']) for col in range(0, 64)]\n df_gain.loc[2] = [\"{}*{}\".format(df_run3[col].loc['onset'], df_run3[col].loc['gain']) for col in range(0, 64)]\n df_gain.loc[3] = [\"{}*{}\".format(df_run4[col].loc['onset'], df_run4[col].loc['gain']) for col in range(0, 64)]\n df_loss = pd.DataFrame(index=range(0,4), columns=range(0,64))\n df_loss.loc[0] = [\"{}*{}\".format(df_run1[col].loc['onset'], df_run1[col].loc['loss']) for col in range(0, 64)]\n df_loss.loc[1] = [\"{}*{}\".format(df_run2[col].loc['onset'], df_run2[col].loc['loss']) for col in range(0, 64)]\n df_loss.loc[2] = [\"{}*{}\".format(df_run3[col].loc['onset'], df_run3[col].loc['loss']) for col in range(0, 64)]\n df_loss.loc[3] = [\"{}*{}\".format(df_run4[col].loc['onset'], df_run4[col].loc['loss']) for col in range(0, 64)]\n\n df_gain.to_csv(opj(data_dir, \"sub-{}/func/times+gain.1D\".format(subject)), \n sep='\\t', index=False, header=False)\n df_loss.to_csv(opj(data_dir, \"sub-{}/func/times+loss.1D\".format(subject)), \n sep='\\t', index=False, header=False)\n print(\"Done\")\n"
],
[
"subject",
"001"
]
]
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
Node: create_stimuli (utility)
==============================


Hierarchy : Afni_proc_through_nipype.create_stimuli
Exec ID : create_stimuli.a070


Original Inputs
---------------


* data_dir : /home/jlefortb/narps_open_pipelines/data/original/ds001734/
* function_str : def create_stimuli_file(subject, data_dir):
# create 1D stimuli file :
import pandas as pd
from os.path import join as opj
df_run1 = pd.read_csv(opj(data_dir, "sub-{}/func/sub-{}_task-MGT_run-01_events.tsv".format(subject, subject)), sep="\t")
df_run1 = df_run1[["onset", "gain", "loss"]].T
df_run2 = pd.read_csv(opj(data_dir, "sub-{}/func/sub-{}_task-MGT_run-02_events.tsv".format(subject, subject)), sep="\t")
df_run2 = df_run2[["onset", "gain", "loss"]].T
df_run3 = pd.read_csv(opj(data_dir, "sub-{}/func/sub-{}_task-MGT_run-03_events.tsv".format(subject, subject)), sep="\t")
df_run3 = df_run3[["onset", "gain", "loss"]].T
df_run4 = pd.read_csv(opj(data_dir, "sub-{}/func/sub-{}_task-MGT_run-04_events.tsv".format(subject, subject)), sep="\t")
df_run4 = df_run4[["onset", "gain", "loss"]].T

df_gain = pd.DataFrame(index=range(0,4), columns=range(0,64))
df_gain.loc[0] = ["{}*{}".format(df_run1[col].loc['onset'], df_run1[col].loc['gain']) for col in range(0, 64)]
df_gain.loc[1] = ["{}*{}".format(df_run2[col].loc['onset'], df_run2[col].loc['gain']) for col in range(0, 64)]
df_gain.loc[2] = ["{}*{}".format(df_run3[col].loc['onset'], df_run3[col].loc['gain']) for col in range(0, 64)]
df_gain.loc[3] = ["{}*{}".format(df_run4[col].loc['onset'], df_run4[col].loc['gain']) for col in range(0, 64)]
df_loss = pd.DataFrame(index=range(0,4), columns=range(0,64))
df_loss.loc[0] = ["{}*{}".format(df_run1[col].loc['onset'], df_run1[col].loc['loss']) for col in range(0, 64)]
df_loss.loc[1] = ["{}*{}".format(df_run2[col].loc['onset'], df_run2[col].loc['loss']) for col in range(0, 64)]
df_loss.loc[2] = ["{}*{}".format(df_run3[col].loc['onset'], df_run3[col].loc['loss']) for col in range(0, 64)]
df_loss.loc[3] = ["{}*{}".format(df_run4[col].loc['onset'], df_run4[col].loc['loss']) for col in range(0, 64)]

df_gain.to_csv(opj(data_dir, "sub-{}/func/times+gain.1D".format(subject)),
sep='\t', index=False, header=False)
df_loss.to_csv(opj(data_dir, "sub-{}/func/times+loss.1D".format(subject)),
sep='\t', index=False, header=False)
print("Done")

* subject : 001


Execution Inputs
----------------


* data_dir : /home/jlefortb/narps_open_pipelines/data/original/ds001734/
* function_str : def create_stimuli_file(subject, data_dir):
# create 1D stimuli file :
import pandas as pd
from os.path import join as opj
df_run1 = pd.read_csv(opj(data_dir, "sub-{}/func/sub-{}_task-MGT_run-01_events.tsv".format(subject, subject)), sep="\t")
df_run1 = df_run1[["onset", "gain", "loss"]].T
df_run2 = pd.read_csv(opj(data_dir, "sub-{}/func/sub-{}_task-MGT_run-02_events.tsv".format(subject, subject)), sep="\t")
df_run2 = df_run2[["onset", "gain", "loss"]].T
df_run3 = pd.read_csv(opj(data_dir, "sub-{}/func/sub-{}_task-MGT_run-03_events.tsv".format(subject, subject)), sep="\t")
df_run3 = df_run3[["onset", "gain", "loss"]].T
df_run4 = pd.read_csv(opj(data_dir, "sub-{}/func/sub-{}_task-MGT_run-04_events.tsv".format(subject, subject)), sep="\t")
df_run4 = df_run4[["onset", "gain", "loss"]].T

df_gain = pd.DataFrame(index=range(0,4), columns=range(0,64))
df_gain.loc[0] = ["{}*{}".format(df_run1[col].loc['onset'], df_run1[col].loc['gain']) for col in range(0, 64)]
df_gain.loc[1] = ["{}*{}".format(df_run2[col].loc['onset'], df_run2[col].loc['gain']) for col in range(0, 64)]
df_gain.loc[2] = ["{}*{}".format(df_run3[col].loc['onset'], df_run3[col].loc['gain']) for col in range(0, 64)]
df_gain.loc[3] = ["{}*{}".format(df_run4[col].loc['onset'], df_run4[col].loc['gain']) for col in range(0, 64)]
df_loss = pd.DataFrame(index=range(0,4), columns=range(0,64))
df_loss.loc[0] = ["{}*{}".format(df_run1[col].loc['onset'], df_run1[col].loc['loss']) for col in range(0, 64)]
df_loss.loc[1] = ["{}*{}".format(df_run2[col].loc['onset'], df_run2[col].loc['loss']) for col in range(0, 64)]
df_loss.loc[2] = ["{}*{}".format(df_run3[col].loc['onset'], df_run3[col].loc['loss']) for col in range(0, 64)]
df_loss.loc[3] = ["{}*{}".format(df_run4[col].loc['onset'], df_run4[col].loc['loss']) for col in range(0, 64)]

df_gain.to_csv(opj(data_dir, "sub-{}/func/times+gain.1D".format(subject)),
sep='\t', index=False, header=False)
df_loss.to_csv(opj(data_dir, "sub-{}/func/times+loss.1D".format(subject)),
sep='\t', index=False, header=False)
print("Done")

* subject : 001


Execution Outputs
-----------------


* Stimuli : None


Runtime info
------------


* duration : 0.012201
* hostname : ptb-03230001.irisa.fr
* prev_wd : /home/jlefortb/narps_open_pipelines
* working_dir : /home/jlefortb/narps_open_pipelines/Afni_proc_through_nipype/_subject_id_001/create_stimuli


Environment
~~~~~~~~~~~


* COLORTERM : truecolor
* DBUS_SESSION_BUS_ADDRESS : unix:path=/run/user/670967/bus
* DEBUGINFOD_URLS : https://debuginfod.fedoraproject.org/
* DESKTOP_SESSION : gnome
* DISPLAY : :0
* EDITOR : /usr/bin/nano
* FSLDIR : /usr/local/fsl
* FSLGECUDAQ : cuda.q
* FSLMULTIFILEQUIT : TRUE
* FSLOUTPUTTYPE : NIFTI_GZ
* FSLTCLSH : /usr/local/fsl/bin/fsltclsh
* FSLWISH : /usr/local/fsl/bin/fslwish
* FSL_LOAD_NIFTI_EXTENSIONS : 0
* FSL_SKIP_GLOBAL : 0
* GDMSESSION : gnome
* GDM_LANG : en_US.UTF-8
* GNOME_SETUP_DISPLAY : :1
* GNOME_TERMINAL_SCREEN : /org/gnome/Terminal/screen/3627c221_9f8a_4ca7_a192_68617ea35d25
* GNOME_TERMINAL_SERVICE : :1.180
* GUESTFISH_INIT : \e[1;34m
* GUESTFISH_OUTPUT : \e[0m
* GUESTFISH_PS1 : \[\e[1;32m\]><fs>\[\e[0;31m\]
* GUESTFISH_RESTORE : \e[0m
* HISTCONTROL : ignoredups
* HISTSIZE : 1000
* HOME : /home/jlefortb
* HOSTNAME : ptb-03230001.irisa.fr
* KDEDIRS : /usr
* LANG : en_US.UTF-8
* LESSOPEN : ||/usr/bin/lesspipe.sh %s
* LOGNAME : jlefortb
* LS_COLORS : rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;37;41:su=37;41:sg=30;43:ca=00:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.zst=01;31:*.tzst=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.wim=01;31:*.swm=01;31:*.dwm=01;31:*.esd=01;31:*.avif=01;35:*.jpg=01;35:*.jpeg=01;35:*.mjpg=01;35:*.mjpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.webp=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.m4a=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.oga=01;36:*.opus=01;36:*.spx=01;36:*.xspf=01;36:*~=00;90:*#=00;90:*.bak=00;90:*.old=00;90:*.orig=00;90:*.part=00;90:*.rej=00;90:*.swp=00;90:*.tmp=00;90:*.dpkg-dist=00;90:*.dpkg-old=00;90:*.ucf-dist=00;90:*.ucf-new=00;90:*.ucf-old=00;90:*.rpmnew=00;90:*.rpmorig=00;90:*.rpmsave=00;90:
* MAIL : /var/spool/mail/jlefortb
* MOZ_GMP_PATH : /usr/lib64/mozilla/plugins/gmp-gmpopenh264/system-installed
* PATH : /home/jlefortb/reproduction/bin:/usr/local/fsl/share/fsl/bin:/usr/local/fsl/share/fsl/bin:/usr/local/fsl/share/fsl/bin:/usr/local/fsl/share/fsl/bin:/home/jlefortb/reproduction/bin:/usr/local/fsl/share/fsl/bin:/usr/local/fsl/share/fsl/bin:/home/jlefortb/.local/bin:/home/jlefortb/bin:/usr/lib64/qt-3.3/bin:/usr/lib64/ccache:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/home/jlefortb/abin:/home/jlefortb/abin
* PS1 : (reproduction) [\u@\h (Fedora 37) \W]$
* PWD : /home/jlefortb
* QTDIR : /usr/lib64/qt-3.3
* QTINC : /usr/lib64/qt-3.3/include
* QTLIB : /usr/lib64/qt-3.3/lib
* QT_IM_MODULE : ibus
* R_LIBS : /home/jlefortb/R
* SESSION_MANAGER : local/unix:@/tmp/.ICE-unix/12471,unix/unix:/tmp/.ICE-unix/12471
* SHELL : /bin/bash
* SHLVL : 1
* SSH_AUTH_SOCK : /run/user/670967/keyring/ssh
* SYSTEMD_EXEC_PID : 12526
* TERM : xterm-256color
* USER : jlefortb
* USERNAME : jlefortb
* VIRTUAL_ENV : /home/jlefortb/reproduction
* VIRTUAL_ENV_PROMPT : (reproduction)
* VTE_VERSION : 7006
* WAYLAND_DISPLAY : wayland-0
* XAUTHORITY : /run/user/670967/.mutter-Xwaylandauth.LIAOF2
* XDG_CURRENT_DESKTOP : GNOME
* XDG_DATA_DIRS : /home/jlefortb/.local/share/flatpak/exports/share:/var/lib/flatpak/exports/share:/usr/local/share/:/usr/share/
* XDG_MENU_PREFIX : gnome-
* XDG_RUNTIME_DIR : /run/user/670967
* XDG_SESSION_CLASS : user
* XDG_SESSION_DESKTOP : gnome
* XDG_SESSION_TYPE : wayland
* XMODIFIERS : @im=ibus
* _ : /home/jlefortb/reproduction/bin/ipython

Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
Node: afni_proc (utility)
=========================


Hierarchy : Afni_proc_through_nipype.afni_proc
Exec ID : afni_proc.a005


Original Inputs
---------------


* command : /home/jlefortb/narps_open_pipelines/narps_open/pipelines/team_6VV2.firstlevel
* data_dir : /home/jlefortb/narps_open_pipelines/data/original/ds001734/
* function_str : def run(command, results_dir, subject, data_dir):
import subprocess
subject= "sub-{}".format(subject)
subprocess.run([command, results_dir, subject, data_dir])
print("Done")

* results_dir : /home/jlefortb/narps_open_pipelines/data/results/derived/team_6VV2_afni/firstlevel/
* subject : 002

Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
[
[
"data_dir",
"/home/jlefortb/narps_open_pipelines/data/original/ds001734/"
],
[
"function_str",
"def create_stimuli_file(subject, data_dir):\n # create 1D stimuli file :\n import pandas as pd \n from os.path import join as opj\n df_run1 = pd.read_csv(opj(data_dir, \"sub-{}/func/sub-{}_task-MGT_run-01_events.tsv\".format(subject, subject)), sep=\"\\t\")\n df_run1 = df_run1[[\"onset\", \"gain\", \"loss\"]].T\n df_run2 = pd.read_csv(opj(data_dir, \"sub-{}/func/sub-{}_task-MGT_run-02_events.tsv\".format(subject, subject)), sep=\"\\t\")\n df_run2 = df_run2[[\"onset\", \"gain\", \"loss\"]].T\n df_run3 = pd.read_csv(opj(data_dir, \"sub-{}/func/sub-{}_task-MGT_run-03_events.tsv\".format(subject, subject)), sep=\"\\t\")\n df_run3 = df_run3[[\"onset\", \"gain\", \"loss\"]].T\n df_run4 = pd.read_csv(opj(data_dir, \"sub-{}/func/sub-{}_task-MGT_run-04_events.tsv\".format(subject, subject)), sep=\"\\t\")\n df_run4 = df_run4[[\"onset\", \"gain\", \"loss\"]].T\n\n df_gain = pd.DataFrame(index=range(0,4), columns=range(0,64))\n df_gain.loc[0] = [\"{}*{}\".format(df_run1[col].loc['onset'], df_run1[col].loc['gain']) for col in range(0, 64)]\n df_gain.loc[1] = [\"{}*{}\".format(df_run2[col].loc['onset'], df_run2[col].loc['gain']) for col in range(0, 64)]\n df_gain.loc[2] = [\"{}*{}\".format(df_run3[col].loc['onset'], df_run3[col].loc['gain']) for col in range(0, 64)]\n df_gain.loc[3] = [\"{}*{}\".format(df_run4[col].loc['onset'], df_run4[col].loc['gain']) for col in range(0, 64)]\n df_loss = pd.DataFrame(index=range(0,4), columns=range(0,64))\n df_loss.loc[0] = [\"{}*{}\".format(df_run1[col].loc['onset'], df_run1[col].loc['loss']) for col in range(0, 64)]\n df_loss.loc[1] = [\"{}*{}\".format(df_run2[col].loc['onset'], df_run2[col].loc['loss']) for col in range(0, 64)]\n df_loss.loc[2] = [\"{}*{}\".format(df_run3[col].loc['onset'], df_run3[col].loc['loss']) for col in range(0, 64)]\n df_loss.loc[3] = [\"{}*{}\".format(df_run4[col].loc['onset'], df_run4[col].loc['loss']) for col in range(0, 64)]\n\n df_gain.to_csv(opj(data_dir, \"sub-{}/func/times+gain.1D\".format(subject)), \n sep='\\t', index=False, header=False)\n df_loss.to_csv(opj(data_dir, \"sub-{}/func/times+loss.1D\".format(subject)), \n sep='\\t', index=False, header=False)\n print(\"Done\")\n"
],
[
"subject",
"002"
]
]
Binary file not shown.
Binary file not shown.
Loading
Loading