Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update Features of Overview #214

Merged
merged 1 commit into from
Dec 2, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,12 +32,12 @@ Easy, advanced inference platform for large language models on Kubernetes

- **Easy of Use**: People can quick deploy a LLM service with minimal configurations.
- **Broad Backends Support**: llmaz supports a wide range of advanced inference backends for different scenarios, like [vLLM](https://github.com/vllm-project/vllm), [Text-Generation-Inference](https://github.com/huggingface/text-generation-inference), [SGLang](https://github.com/sgl-project/sglang), [llama.cpp](https://github.com/ggerganov/llama.cpp). Find the full list of supported backends [here](./docs/support-backends.md).
- **Model Distribution**: Out-of-the-box model cache system with [Manta](https://github.com/InftyAI/Manta).
- **Efficient Model Distribution**: Out-of-the-box model cache system support with [Manta](https://github.com/InftyAI/Manta).
- **Accelerator Fungibility**: llmaz supports serving the same LLM with various accelerators to optimize cost and performance.
- **SOTA Inference**: llmaz supports the latest cutting-edge researches like [Speculative Decoding](https://arxiv.org/abs/2211.17192) or [Splitwise](https://arxiv.org/abs/2311.18677)(WIP) to run on Kubernetes.
- **Various Model Providers**: llmaz supports a wide range of model providers, such as [HuggingFace](https://huggingface.co/), [ModelScope](https://www.modelscope.cn), ObjectStores. llmaz will automatically handle the model loading, requiring no effort from users.
- **Multi-hosts Support**: llmaz supports both single-host and multi-hosts scenarios with [LWS](https://github.com/kubernetes-sigs/lws) from day 0.
- **Scaling Efficiency (WIP)**: llmaz works smoothly with autoscaling components like [Cluster-Autoscaler](https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler) or [Karpenter](https://github.com/kubernetes-sigs/karpenter) to meet elastic demands.
- **Scaling Efficiency (WIP)**: llmaz works smoothly with autoscaling components like [Cluster-Autoscaler](https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler) or [Karpenter](https://github.com/kubernetes-sigs/karpenter) to satisfy elastic needs.

## Quick Start

Expand Down
Loading