Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updating and systematising NDArray typing #335

Merged
merged 3 commits into from
Oct 21, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,7 @@ class MyReferenceStyle(AuthorYearReferenceStyle):
("py:class", "numpy._typing._array_like._ScalarType_co"),
("py:class", "numpy._typing._generic_alias.ScalarType"),
("py:class", "numpy.float32"),
("py:class", "numpy.float64"),
("py:class", "numpy.int64"),
("py:class", "numpy.timedelta64"),
("py:class", "numpy.bool_"),
Expand Down
20 changes: 10 additions & 10 deletions pyrealm/constants/core_const.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ class CoreConst(ConstantsClass):
:cite:t:`berger:1978a`."""

# Hygro constants
magnus_coef: NDArray[np.float32] = field(
magnus_coef: NDArray[np.float64] = field(
default_factory=lambda: np.array((611.2, 17.62, 243.12))
)
"""Three coefficients of the Magnus equation for saturated vapour pressure,
Expand All @@ -132,23 +132,23 @@ class CoreConst(ConstantsClass):
"""Set the method used for calculating water density ('fisher' or 'chen')."""

# Fisher Dial
fisher_dial_lambda: NDArray[np.float32] = field(
fisher_dial_lambda: NDArray[np.float64] = field(
default_factory=lambda: np.array(
[1788.316, 21.55053, -0.4695911, 0.003096363, -7.341182e-06]
)
)
r"""Coefficients of the temperature dependent polynomial for :math:`\lambda`
in the Tumlirz equation."""

fisher_dial_Po: NDArray[np.float32] = field(
fisher_dial_Po: NDArray[np.float64] = field(
default_factory=lambda: np.array(
[5918.499, 58.05267, -1.1253317, 0.0066123869, -1.4661625e-05]
)
)
"""Coefficients of the temperature dependent polynomial for :math:`P_0` in the
Tumlirz equation."""

fisher_dial_Vinf: NDArray[np.float32] = field(
fisher_dial_Vinf: NDArray[np.float64] = field(
default_factory=lambda: np.array(
[
0.6980547,
Expand All @@ -168,7 +168,7 @@ class CoreConst(ConstantsClass):
in the Tumlirz equation."""

# Chen water density
chen_po: NDArray[np.float32] = field(
chen_po: NDArray[np.float64] = field(
default_factory=lambda: np.array(
[
0.99983952,
Expand All @@ -186,23 +186,23 @@ class CoreConst(ConstantsClass):
r"""Coefficients of the polynomial relationship of water density with temperature at
1 atm (:math:`P^0`, kg/m^3) from :cite:t:`chen:2008a`."""

chen_ko: NDArray[np.float32] = field(
chen_ko: NDArray[np.float64] = field(
default_factory=lambda: np.array(
[19652.17, 148.1830, -2.29995, 0.01281, -4.91564e-5, 1.035530e-7]
)
)
r"""Polynomial relationship of bulk modulus of water with temperature at 1 atm
(:math:`K^0`, kg/m^3) from :cite:t:`chen:2008a`."""

chen_ca: NDArray[np.float32] = field(
chen_ca: NDArray[np.float64] = field(
default_factory=lambda: np.array(
[3.26138, 5.223e-4, 1.324e-4, -7.655e-7, 8.584e-10]
)
)
r"""Coefficients of the polynomial temperature dependent coefficient :math:`A` from
:cite:t:`chen:2008a`."""

chen_cb: NDArray[np.float32] = field(
chen_cb: NDArray[np.float64] = field(
default_factory=lambda: np.array(
[7.2061e-5, -5.8948e-6, 8.69900e-8, -1.0100e-9, 4.3220e-12]
)
Expand All @@ -220,11 +220,11 @@ class CoreConst(ConstantsClass):
huber_mu_ast: float = 1e-06
r"""Huber reference pressure (:math:`\mu_{ast}` 1.0e-6, Pa s)"""

huber_H_i: NDArray[np.float32] = field(
huber_H_i: NDArray[np.float64] = field(
default_factory=lambda: np.array([1.67752, 2.20462, 0.6366564, -0.241605])
)
"""Temperature dependent parameterisation of Hi in Huber."""
huber_H_ij: NDArray[np.float32] = field(
huber_H_ij: NDArray[np.float64] = field(
default_factory=lambda: np.array(
[
[0.520094, 0.0850895, -1.08374, -0.289555, 0.0, 0.0],
Expand Down
8 changes: 4 additions & 4 deletions pyrealm/constants/pmodel_const.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,11 +139,11 @@ class PModelConst(ConstantsClass):
# - note that kphio_C4 has been updated to account for an unintended double
# 8 fold downscaling to account for the fraction of light reaching PS2.
# from original values of [-0.008, 0.00375, -0.58e-4]
kphio_C4: NDArray[np.float32] = field(
kphio_C4: NDArray[np.float64] = field(
default_factory=lambda: np.array((-0.064, 0.03, -0.000464))
)
"""Quadratic scaling of Kphio with temperature for C4 plants"""
kphio_C3: NDArray[np.float32] = field(
kphio_C3: NDArray[np.float64] = field(
default_factory=lambda: np.array((0.352, 0.022, -0.00034))
)
"""Quadratic scaling of Kphio with temperature for C3 plants"""
Expand Down Expand Up @@ -193,11 +193,11 @@ class PModelConst(ConstantsClass):
"""Exponent of the threshold function for Mengoli soil moisture"""

# Unit cost ratio (beta) values for different CalcOptimalChi methods
beta_cost_ratio_prentice14: NDArray[np.float32] = field(
beta_cost_ratio_prentice14: NDArray[np.float64] = field(
default_factory=lambda: np.array([146.0])
)
r"""Unit cost ratio for C3 plants (:math:`\beta`, 146.0)."""
beta_cost_ratio_c4: NDArray[np.float32] = field(
beta_cost_ratio_c4: NDArray[np.float64] = field(
default_factory=lambda: np.array([146.0 / 9])
)
r"""Unit cost ratio for C4 plants (:math:`\beta`, 16.222)."""
Expand Down
41 changes: 27 additions & 14 deletions pyrealm/core/hygro.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,9 @@
from pyrealm.core.utilities import bounds_checker, evaluate_horner_polynomial


def calc_vp_sat(ta: NDArray, core_const: CoreConst = CoreConst()) -> NDArray:
def calc_vp_sat(
ta: NDArray[np.float64], core_const: CoreConst = CoreConst()
) -> NDArray[np.float64]:
r"""Calculate vapour pressure of saturated air.

This function calculates the vapour pressure of saturated air in kPa at a given
Expand Down Expand Up @@ -56,8 +58,10 @@ def calc_vp_sat(ta: NDArray, core_const: CoreConst = CoreConst()) -> NDArray:


def convert_vp_to_vpd(
vp: NDArray, ta: NDArray, core_const: CoreConst = CoreConst()
) -> NDArray:
vp: NDArray[np.float64],
ta: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
) -> NDArray[np.float64]:
"""Convert vapour pressure to vapour pressure deficit.

Args:
Expand Down Expand Up @@ -86,8 +90,10 @@ def convert_vp_to_vpd(


def convert_rh_to_vpd(
rh: NDArray, ta: NDArray, core_const: CoreConst = CoreConst()
) -> NDArray:
rh: NDArray[np.float64],
ta: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
) -> NDArray[np.float64]:
"""Convert relative humidity to vapour pressure deficit.

Args:
Expand Down Expand Up @@ -124,8 +130,10 @@ def convert_rh_to_vpd(


def convert_sh_to_vp(
sh: NDArray, patm: NDArray, core_const: CoreConst = CoreConst()
) -> NDArray:
sh: NDArray[np.float64],
patm: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
) -> NDArray[np.float64]:
"""Convert specific humidity to vapour pressure.

Args:
Expand All @@ -149,8 +157,11 @@ def convert_sh_to_vp(


def convert_sh_to_vpd(
sh: NDArray, ta: NDArray, patm: NDArray, core_const: CoreConst = CoreConst()
) -> NDArray:
sh: NDArray[np.float64],
ta: NDArray[np.float64],
patm: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
) -> NDArray[np.float64]:
"""Convert specific humidity to vapour pressure deficit.

Args:
Expand Down Expand Up @@ -185,7 +196,9 @@ def convert_sh_to_vpd(
# The following functions are integrated from the evap.py implementation of SPLASH v1.


def calc_saturation_vapour_pressure_slope(tc: NDArray) -> NDArray:
def calc_saturation_vapour_pressure_slope(
tc: NDArray[np.float64],
) -> NDArray[np.float64]:
"""Calculate the slope of the saturation vapour pressure curve.

Calculates the slope of the saturation pressure temperature curve, following
Expand All @@ -207,7 +220,7 @@ def calc_saturation_vapour_pressure_slope(tc: NDArray) -> NDArray:
)


def calc_enthalpy_vaporisation(tc: NDArray) -> NDArray:
def calc_enthalpy_vaporisation(tc: NDArray[np.float64]) -> NDArray[np.float64]:
"""Calculate the enthalpy of vaporization.

Calculates the latent heat of vaporization of water as a function of
Expand All @@ -224,7 +237,7 @@ def calc_enthalpy_vaporisation(tc: NDArray) -> NDArray:
return 1.91846e6 * ((tc + 273.15) / (tc + 273.15 - 33.91)) ** 2


def calc_specific_heat(tc: NDArray) -> NDArray:
def calc_specific_heat(tc: NDArray[np.float64]) -> NDArray[np.float64]:
"""Calculate the specific heat of air.

Calculates the specific heat of air at a constant pressure (:math:`c_{pm}`, J/kg/K)
Expand Down Expand Up @@ -257,8 +270,8 @@ def calc_specific_heat(tc: NDArray) -> NDArray:


def calc_psychrometric_constant(
tc: NDArray, p: NDArray, core_const: CoreConst = CoreConst()
) -> NDArray:
tc: NDArray[np.float64], p: NDArray[np.float64], core_const: CoreConst = CoreConst()
) -> NDArray[np.float64]:
r"""Calculate the psychrometric constant.

Calculates the psychrometric constant (:math:`\lambda`, Pa/K) given the temperature
Expand Down
5 changes: 4 additions & 1 deletion pyrealm/core/pressure.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,15 @@
atmospheric pressure.
""" # noqa D210, D415

import numpy as np
from numpy.typing import NDArray

from pyrealm.constants import CoreConst


def calc_patm(elv: NDArray, core_const: CoreConst = CoreConst()) -> NDArray:
def calc_patm(
elv: NDArray[np.float64], core_const: CoreConst = CoreConst()
) -> NDArray[np.float64]:
r"""Calculate atmospheric pressure from elevation.

Calculates atmospheric pressure as a function of elevation with reference to the
Expand Down
4 changes: 3 additions & 1 deletion pyrealm/core/solar.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,9 @@


def calc_heliocentric_longitudes(
julian_day: NDArray, n_days: NDArray, core_const: CoreConst = CoreConst()
julian_day: NDArray[np.float64],
n_days: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
) -> tuple[NDArray, NDArray]:
"""Calculate heliocentric longitude and anomaly.

Expand Down
12 changes: 7 additions & 5 deletions pyrealm/core/utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,13 +211,13 @@ def _get_interval_functions(interval_type: str = "[]") -> tuple[np.ufunc, np.ufu


def bounds_checker(
values: NDArray,
values: NDArray[np.float64],
lower: float = -np.inf,
upper: float = np.inf,
interval_type: str = "[]",
label: str = "",
unit: str = "",
) -> NDArray:
) -> NDArray[np.float64]:
r"""Check inputs fall within bounds.

This is a simple pass through function that tests whether the values fall within
Expand Down Expand Up @@ -255,7 +255,7 @@ def bounds_checker(


def bounds_mask(
inputs: NDArray,
inputs: NDArray[np.float64],
lower: float = -np.inf,
upper: float = np.inf,
interval_type: str = "[]",
Expand Down Expand Up @@ -312,7 +312,7 @@ def bounds_mask(
# modifying the original input. Using type
if not np.issubdtype(inputs.dtype, np.floating):
# Copies implicitly
outputs = inputs.astype(np.float32)
outputs = inputs.astype(np.float64)
else:
outputs = inputs.copy()

Expand All @@ -336,7 +336,9 @@ def bounds_mask(
return outputs


def evaluate_horner_polynomial(x: NDArray, cf: list | NDArray) -> NDArray:
def evaluate_horner_polynomial(
x: NDArray[np.float64], cf: list | NDArray
) -> NDArray[np.float64]:
r"""Evaluates a polynomial with coefficients `cf` at `x` using Horner's method.

Horner's method is a fast way to evaluate polynomials, especially for large degrees,
Expand Down
30 changes: 15 additions & 15 deletions pyrealm/core/water.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,10 @@


def calc_density_h2o_chen(
tc: NDArray,
p: NDArray,
tc: NDArray[np.float64],
p: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
) -> NDArray:
) -> NDArray[np.float64]:
"""Calculate the density of water using Chen et al 2008.

This function calculates the density of water at a given temperature and pressure
Expand Down Expand Up @@ -65,10 +65,10 @@ def calc_density_h2o_chen(


def calc_density_h2o_fisher(
tc: NDArray,
patm: NDArray,
tc: NDArray[np.float64],
patm: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
) -> NDArray:
) -> NDArray[np.float64]:
"""Calculate water density.

Calculates the density of water as a function of temperature and atmospheric
Expand Down Expand Up @@ -124,11 +124,11 @@ def calc_density_h2o_fisher(


def calc_density_h2o(
tc: NDArray,
patm: NDArray,
tc: NDArray[np.float64],
patm: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
safe: bool = True,
) -> NDArray:
) -> NDArray[np.float64]:
"""Calculate water density.

Calculates the density of water as a function of temperature and atmospheric
Expand Down Expand Up @@ -179,11 +179,11 @@ def calc_density_h2o(


def calc_viscosity_h2o(
tc: NDArray,
patm: NDArray,
tc: NDArray[np.float64],
patm: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
simple: bool = False,
) -> NDArray:
) -> NDArray[np.float64]:
r"""Calculate the viscosity of water.

Calculates the viscosity of water (:math:`\eta`) as a function of temperature and
Expand Down Expand Up @@ -247,11 +247,11 @@ def calc_viscosity_h2o(


def calc_viscosity_h2o_matrix(
tc: NDArray,
patm: NDArray,
tc: NDArray[np.float64],
patm: NDArray[np.float64],
core_const: CoreConst = CoreConst(),
simple: bool = False,
) -> NDArray:
) -> NDArray[np.float64]:
r"""Calculate the viscosity of water.

Calculates the viscosity of water (:math:`\eta`) as a function of temperature and
Expand Down
8 changes: 4 additions & 4 deletions pyrealm/demography/canopy.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,13 +55,13 @@ def __init__(
"""Total number of canopy layers."""
self.n_cohorts: int
"""Total number of cohorts in the canopy."""
self.layer_heights: NDArray[np.float32]
self.layer_heights: NDArray[np.float64]
"""Column vector of the heights of canopy layers."""
self.stem_relative_radius: NDArray[np.float32]
self.stem_relative_radius: NDArray[np.float64]
"""Relative radius values of stems at canopy layer heights."""
self.stem_crown_area: NDArray[np.float32]
self.stem_crown_area: NDArray[np.float64]
"""Stem projected crown area at canopy layer heights."""
self.stem_leaf_area: NDArray[np.float32]
self.stem_leaf_area: NDArray[np.float64]
"""Stem projected leaf area at canopy layer heights."""

self._calculate_canopy(community=community)
Expand Down
Loading
Loading