Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

21 generate dae uncertainties #36

Merged
merged 18 commits into from
Oct 24, 2024
Merged
2 changes: 1 addition & 1 deletion doc/architectural_decisions/002-use-ophyd-async.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,4 +34,4 @@ We will use `ophyd-async`.
- `ophyd-async` will allow us to do fly scanning, if required in future, more easily than `ophyd`
- Developers will need to understand more details about `asyncio`
- Developers will have to write somewhat less boilerplate code in `ophyd-async` as compared to `ophyd`
- Our devices should be more comparable to other facilities on site (e.g. DLS) who are using `ophyd-async`.
- Our devices should be more comparable to other facilities on site (e.g. DLS) who are using `ophyd-async`.
23 changes: 23 additions & 0 deletions doc/architectural_decisions/004-use-scipp.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Use `scipp`

## Status

Current

## Context

A decision needs to be made about whether to use scipp, numpy, uncertainties or develop our own library for the purpose of providing support for generating uncertanties on our counts data.

# Decision

We will be using scipp.

# Justification & Consequences

- `scipp` is being developed at ESS with past input from STFC, so is well suited for neutron counts data.
- `scipp` has a `numpy`-like interface but handles units and uncertainties by default under-the-hood.
- Neither `numpy` or `uncertanties` have exactly the functionality we would need, so the solution using them would be a mix of the libraries and our own code, there would be more places to go wrong. Maintainability.
- `uncertainties` package tracks correlations so may have bad scaling on "large" arrays like counts data from the DAE.
- Developing our own uncertainties library will take time to understand and then implement. All of the functionality that we need has been done beforehand, so better to not waste time & effort.
- Less expertise with this library on site (mitigation: don't do too much which is very complicated with it)
- Potentially duplicates some of `mantid`'s functionality: (mitigation: use `scipp` for "simple" things, use `mantid` in future if people want to do "full" data reduction pipelines)
7 changes: 7 additions & 0 deletions doc/devices/dae.md
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,8 @@ Published signals:
- `simpledae.good_frames` - the number of good frames reported by the DAE
- `reducer.det_counts` - summed detector counts for all of the user-provided spectra
- `reducer.intensity` - normalized intensity (`det_counts / good_frames`)
- `reducer.det_counts_stddev` - uncertainty (standard deviation) of the summed detector counts
- `reducer.intensity_stddev` - uncertainty (standard deviation) of the normalised intensity

### PeriodGoodFramesNormalizer

Expand All @@ -187,6 +189,8 @@ Published signals:
- `simpledae.period.good_frames` - the number of good frames reported by the DAE
- `reducer.det_counts` - summed detector counts for all of the user-provided spectra
- `reducer.intensity` - normalized intensity (`det_counts / good_frames`)
- `reducer.det_counts_stddev` - uncertainty (standard deviation) of the summed detector counts
- `reducer.intensity_stddev` - uncertainty (standard deviation) of the normalised intensity

### DetectorMonitorNormalizer

Expand All @@ -197,6 +201,9 @@ Published signals:
- `reducer.det_counts` - summed detector counts for the user-provided detector spectra
- `reducer.mon_counts` - summed monitor counts for the user-provided monitor spectra
- `reducer.intensity` - normalized intensity (`det_counts / mon_counts`)
- `reducer.det_counts_stddev` - uncertainty (standard deviation) of the summed detector counts
- `reducer.mon_counts_stddev` - uncertainty (standard deviation) of the summed monitor counts
- `reducer.intensity_stddev` - uncertainty (standard deviation) of the normalised intensity

## Waiters

Expand Down
2 changes: 2 additions & 0 deletions manual_system_tests/dae_scan.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,9 @@ def dae_scan_plan() -> Generator[Msg, None, None]:
block.name,
controller.run_number.name,
reducer.intensity.name,
reducer.intensity_stddev.name,
reducer.det_counts.name,
reducer.det_counts_stddev.name,
dae.good_frames.name,
]
),
Expand Down
61 changes: 58 additions & 3 deletions src/ibex_bluesky_core/devices/simpledae/reducers.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
"""DAE data reduction strategies."""

import asyncio
import math
from abc import ABCMeta, abstractmethod
from typing import TYPE_CHECKING, Collection, Sequence

Expand All @@ -20,6 +21,9 @@
from ibex_bluesky_core.devices.simpledae import SimpleDae


INTENSITY_PRECISION = 6


async def sum_spectra(spectra: Collection[DaeSpectra]) -> sc.Variable | sc.DataArray:
"""Read and sum a number of spectra from the DAE.

Expand Down Expand Up @@ -51,7 +55,16 @@ def __init__(self, prefix: str, detector_spectra: Sequence[int]) -> None:
)

self.det_counts, self._det_counts_setter = soft_signal_r_and_setter(float, 0.0)
self.intensity, self._intensity_setter = soft_signal_r_and_setter(float, 0.0, precision=6)
self.intensity, self._intensity_setter = soft_signal_r_and_setter(
float, 0.0, precision=INTENSITY_PRECISION
)

self.det_counts_stddev, self._det_counts_stddev_setter = soft_signal_r_and_setter(
float, 0.0
)
self.intensity_stddev, self._intensity_stddev_setter = soft_signal_r_and_setter(
float, 0.0, precision=INTENSITY_PRECISION
)

super().__init__(name="")

Expand All @@ -66,14 +79,28 @@ async def reduce_data(self, dae: "SimpleDae") -> None:
)

self._det_counts_setter(float(summed_counts.value))
self._intensity_setter(float(summed_counts.value) / denominator)

if denominator == 0.0:
self._intensity_setter(0.0)
intensity_var = 0.0
else:
self._intensity_setter(float(summed_counts.value) / denominator)
temp_intensity_var = (summed_counts / denominator).variance
jackbdoughty marked this conversation as resolved.
Show resolved Hide resolved
intensity_var = temp_intensity_var if temp_intensity_var is not None else 0.0

detector_counts_var = 0.0 if summed_counts.variance is None else summed_counts.variance

self._det_counts_stddev_setter(math.sqrt(detector_counts_var))
self._intensity_stddev_setter(math.sqrt(intensity_var))

def additional_readable_signals(self, dae: "SimpleDae") -> list[Device]:
"""Publish interesting signals derived or used by this reducer."""
return [
self.det_counts,
self.intensity,
self.denominator(dae),
self.det_counts_stddev,
self.intensity_stddev,
]


Expand Down Expand Up @@ -117,7 +144,19 @@ def __init__(

self.det_counts, self._det_counts_setter = soft_signal_r_and_setter(float, 0.0)
self.mon_counts, self._mon_counts_setter = soft_signal_r_and_setter(float, 0.0)
self.intensity, self._intensity_setter = soft_signal_r_and_setter(float, 0.0, precision=6)
self.intensity, self._intensity_setter = soft_signal_r_and_setter(
float, 0.0, precision=INTENSITY_PRECISION
)

self.det_counts_stddev, self._det_counts_stddev_setter = soft_signal_r_and_setter(
float, 0.0
)
self.mon_counts_stddev, self._mon_counts_stddev_setter = soft_signal_r_and_setter(
float, 0.0
)
self.intensity_stddev, self._intensity_stddev_setter = soft_signal_r_and_setter(
float, 0.0, precision=INTENSITY_PRECISION
)

super().__init__(name="")

Expand All @@ -131,10 +170,26 @@ async def reduce_data(self, dae: "SimpleDae") -> None:
self._mon_counts_setter(float(monitor_counts.value))
self._intensity_setter(float((detector_counts / monitor_counts).value))

detector_counts_var = 0.0 if detector_counts.variance is None else detector_counts.variance
monitor_counts_var = 0.0 if monitor_counts.variance is None else monitor_counts.variance

intensity_var = (
0.0
if detector_counts_var + monitor_counts_var == 0.0
else (detector_counts / monitor_counts).variance
)

self._det_counts_stddev_setter(math.sqrt(detector_counts_var))
self._mon_counts_stddev_setter(math.sqrt(monitor_counts_var))
self._intensity_stddev_setter(math.sqrt(intensity_var))

def additional_readable_signals(self, dae: "SimpleDae") -> list[Device]:
"""Publish interesting signals derived or used by this reducer."""
return [
self.det_counts,
self.mon_counts,
self.intensity,
self.det_counts_stddev,
self.mon_counts_stddev,
self.intensity_stddev,
]
174 changes: 174 additions & 0 deletions tests/devices/simpledae/test_reducers.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import math
from unittest.mock import AsyncMock

import pytest
Expand Down Expand Up @@ -45,6 +46,9 @@ def __init__(self):
self.period = FakePeriod()


# Scalar Normalizer


async def test_period_good_frames_normalizer_publishes_period_good_frames(
period_good_frames_reducer: PeriodGoodFramesNormalizer,
):
Expand All @@ -67,6 +71,15 @@ async def test_good_frames_normalizer_publishes_good_frames(
assert good_frames_reducer.denominator(fake_dae) == fake_dae.good_frames


async def test_scalar_normalizer_publishes_uncertainties(
simpledae: SimpleDae,
good_frames_reducer: GoodFramesNormalizer,
):
readables = good_frames_reducer.additional_readable_signals(simpledae)
assert good_frames_reducer.intensity_stddev in readables
assert good_frames_reducer.det_counts_stddev in readables


async def test_period_good_frames_normalizer(
simpledae: SimpleDae,
period_good_frames_reducer: PeriodGoodFramesNormalizer,
Expand Down Expand Up @@ -96,6 +109,83 @@ async def test_period_good_frames_normalizer(
assert intensity == pytest.approx(170.731707317)


async def test_period_good_frames_normalizer_uncertainties(
simpledae: SimpleDae,
period_good_frames_reducer: PeriodGoodFramesNormalizer,
):
set_mock_value(simpledae.period.good_frames, 123)

period_good_frames_reducer.detectors[1].read_spectrum_dataarray = AsyncMock(
return_value=sc.DataArray(
data=sc.Variable(
dims=["tof"],
values=[1000.0, 2000.0, 3000.0],
variances=[1000.0, 2000.0, 3000.0],
unit=sc.units.counts,
),
coords={"tof": sc.array(dims=["tof"], values=[0, 1, 2, 3])},
)
)
period_good_frames_reducer.detectors[2].read_spectrum_dataarray = AsyncMock(
return_value=sc.DataArray(
data=sc.Variable(
dims=["tof"],
values=[4000.0, 5000.0, 6000.0],
variances=[4000.0, 5000.0, 6000.0],
unit=sc.units.counts,
),
coords={"tof": sc.array(dims=["tof"], values=[0, 1, 2, 3])},
)
)

await period_good_frames_reducer.reduce_data(simpledae)

det_counts_stddev = await period_good_frames_reducer.det_counts_stddev.get_value()
intensity_stddev = await period_good_frames_reducer.intensity_stddev.get_value()

assert det_counts_stddev == math.sqrt(21000)
assert intensity_stddev == pytest.approx(math.sqrt((21000 + (123**2 / 21000)) / 123**2), 1e-4)


async def test_period_good_frames_normalizer_zero_counts(
simpledae: SimpleDae, period_good_frames_reducer: PeriodGoodFramesNormalizer
):

period_good_frames_reducer.detectors[1].read_spectrum_dataarray = AsyncMock(
return_value=sc.DataArray(
data=sc.Variable(
dims=["tof"],
values=[0.0, 0.0, 0.0],
variances=[0.0, 0.0, 0.0],
unit=sc.units.counts,
),
coords={"tof": sc.array(dims=["tof"], values=[0, 1, 2, 3])},
)
)
period_good_frames_reducer.detectors[2].read_spectrum_dataarray = AsyncMock(
return_value=sc.DataArray(
data=sc.Variable(
dims=["tof"],
values=[0.0, 0.0, 0.0],
variances=[0.0, 0.0, 0.0],
unit=sc.units.counts,
),
coords={"tof": sc.array(dims=["tof"], values=[0, 1, 2, 3])},
)
)

await period_good_frames_reducer.reduce_data(simpledae)

det_counts_stddev = await period_good_frames_reducer.det_counts_stddev.get_value()
intensity_stddev = await period_good_frames_reducer.intensity_stddev.get_value()

assert det_counts_stddev == 0
assert intensity_stddev == 0


# Monitor Normalizer


async def test_monitor_normalizer(simpledae: SimpleDae, monitor_normalizer: MonitorNormalizer):
monitor_normalizer.detectors[1].read_spectrum_dataarray = AsyncMock(
return_value=sc.DataArray(
Expand All @@ -121,6 +211,80 @@ async def test_monitor_normalizer(simpledae: SimpleDae, monitor_normalizer: Moni
assert intensity == pytest.approx(6000 / 15000)


async def test_monitor_normalizer_zero_counts(
simpledae: SimpleDae, monitor_normalizer: MonitorNormalizer
):

monitor_normalizer.detectors[1].read_spectrum_dataarray = AsyncMock(
return_value=sc.DataArray(
data=sc.Variable(
dims=["tof"],
values=[0.0, 0.0, 0.0],
variances=[0.0, 0.0, 0.0],
unit=sc.units.counts,
),
coords={"tof": sc.array(dims=["tof"], values=[0, 1, 2, 3])},
)
)
monitor_normalizer.monitors[2].read_spectrum_dataarray = AsyncMock(
return_value=sc.DataArray(
data=sc.Variable(
dims=["tof"],
values=[0.0, 0.0, 0.0],
variances=[0.0, 0.0, 0.0],
unit=sc.units.counts,
),
coords={"tof": sc.array(dims=["tof"], values=[0, 1, 2, 3])},
)
)

await monitor_normalizer.reduce_data(simpledae)

det_counts_stddev = await monitor_normalizer.det_counts_stddev.get_value()
mon_counts_stddev = await monitor_normalizer.mon_counts_stddev.get_value()
intensity_stddev = await monitor_normalizer.intensity_stddev.get_value()

assert det_counts_stddev == 0
assert mon_counts_stddev == 0
assert intensity_stddev == 0

async def test_monitor_normalizer_uncertainties(
simpledae: SimpleDae, monitor_normalizer: MonitorNormalizer
):
monitor_normalizer.detectors[1].read_spectrum_dataarray = AsyncMock(
return_value=sc.DataArray(
data=sc.Variable(
dims=["tof"],
values=[1000.0, 2000.0, 3000.0],
variances=[1000.0, 2000.0, 3000.0],
unit=sc.units.counts,
),
coords={"tof": sc.array(dims=["tof"], values=[0, 1, 2, 3])},
)
)
monitor_normalizer.monitors[2].read_spectrum_dataarray = AsyncMock(
return_value=sc.DataArray(
data=sc.Variable(
dims=["tof"],
values=[4000.0, 5000.0, 6000.0],
variances=[4000.0, 5000.0, 6000.0],
unit=sc.units.counts,
),
coords={"tof": sc.array(dims=["tof"], values=[0, 1, 2, 3])},
)
)

await monitor_normalizer.reduce_data(simpledae)

det_counts_stddev = await monitor_normalizer.det_counts_stddev.get_value()
mon_counts_stddev = await monitor_normalizer.mon_counts_stddev.get_value()
intensity_stddev = await monitor_normalizer.intensity_stddev.get_value()

assert det_counts_stddev == math.sqrt(6000)
assert mon_counts_stddev == math.sqrt(15000)
assert intensity_stddev == pytest.approx(math.sqrt((6000 + (6000**2 / 15000)) / 15000**2), 1e-4)


async def test_monitor_normalizer_publishes_raw_and_normalized_counts(
simpledae: SimpleDae,
monitor_normalizer: MonitorNormalizer,
Expand All @@ -129,3 +293,13 @@ async def test_monitor_normalizer_publishes_raw_and_normalized_counts(
assert monitor_normalizer.intensity in readables
assert monitor_normalizer.det_counts in readables
assert monitor_normalizer.mon_counts in readables


async def test_monitor_normalizer_publishes_raw_and_normalized_count_uncertainties(
simpledae: SimpleDae,
monitor_normalizer: MonitorNormalizer,
):
readables = monitor_normalizer.additional_readable_signals(simpledae)
assert monitor_normalizer.intensity_stddev in readables
assert monitor_normalizer.det_counts_stddev in readables
assert monitor_normalizer.mon_counts_stddev in readables
Loading