Skip to content

Commit

Permalink
optionally include power vector for inference.
Browse files Browse the repository at this point in the history
  • Loading branch information
anarkiwi committed Feb 12, 2024
1 parent 3249d6f commit a540cab
Show file tree
Hide file tree
Showing 6 changed files with 80 additions and 20 deletions.
10 changes: 8 additions & 2 deletions grc/iqtlabs_iq_inference.block.yml
Original file line number Diff line number Diff line change
Expand Up @@ -23,27 +23,31 @@ documentation: |-
parameters:
tag: received frequency tag name.
vlen: length of complex/FFT dB vector.
sample_buffer: size of sample lookback buffer.
min_peak_points: Only run inference on buckets with this minimum dB power.
model_names: if not empty, comma separated list of model names.
model_server: if not empty, do torchserve inference to this address.
confidence: Only output inference results where confidence is greater.
n_inference: if > 0, only run inference on 1/n_inference images.
samp_rate: sample rate.
power_inference: if True, infer on power as well as samples.
templates:
imports: from gnuradio import iqtlabs
make: >
iqtlabs.iq_inference(
${tag}, ${vlen}, ${sample_buffer}, ${min_peak_points}, ${model_server},
${model_names}, ${confidence}, ${n_inference}, ${samp_rate})
${model_names}, ${confidence}, ${n_inference}, ${samp_rate},
${power_inference})
cpp_templates:
includes: ['#include <gnuradio/iqtlabs/iq_inference.h>']
declarations: 'gr::iqtlabs::image_inference::sptr ${id};'
make: >
this->${id} = gr::iqtlabs::iq_inference::make(
${tag}, ${vlen}, ${sample_buffer, ${min_peak_points}, ${model_server},
${model_names}, ${confidence}, ${n_inference}, ${samp_rate})
${model_names}, ${confidence}, ${n_inference}, ${samp_rate},
$power_inference);
link: ['libgnuradio-iqtlabs.so']

parameters:
Expand All @@ -66,6 +70,8 @@ parameters:
dtype: int
- id: samp_rate
dtype: int
- id: power_inference
dtype: bool

asserts:
- ${ tag != "" }
Expand Down
2 changes: 1 addition & 1 deletion include/gnuradio/iqtlabs/iq_inference.h
Original file line number Diff line number Diff line change
Expand Up @@ -231,7 +231,7 @@ class IQTLABS_API iq_inference : virtual public gr::block {
static sptr make(const std::string &tag, size_t vlen, size_t sample_buffer,
double min_peak_points, const std::string &model_server,
const std::string &model_names, double confidence,
size_t n_inference, int samp_rate);
size_t n_inference, int samp_rate, bool power_inference);
};

} // namespace iqtlabs
Expand Down
22 changes: 16 additions & 6 deletions lib/iq_inference_impl.cc
Original file line number Diff line number Diff line change
Expand Up @@ -215,10 +215,10 @@ iq_inference::sptr
iq_inference::make(const std::string &tag, size_t vlen, size_t sample_buffer,
double min_peak_points, const std::string &model_server,
const std::string &model_names, double confidence,
size_t n_inference, int samp_rate) {
size_t n_inference, int samp_rate, bool power_inference) {
return gnuradio::make_block_sptr<iq_inference_impl>(
tag, vlen, sample_buffer, min_peak_points, model_server, model_names,
confidence, n_inference, samp_rate);
confidence, n_inference, samp_rate, power_inference);
}

/*
Expand All @@ -230,19 +230,20 @@ iq_inference_impl::iq_inference_impl(const std::string &tag, size_t vlen,
const std::string &model_server,
const std::string &model_names,
double confidence, size_t n_inference,
int samp_rate)
int samp_rate, bool power_inference)
: gr::block("iq_inference",
gr::io_signature::makev(
2 /* min inputs */, 2 /* min inputs */,
std::vector<int>{(int)(vlen * sizeof(gr_complex)),
(int)(vlen * sizeof(float))}),
gr::io_signature::make(1 /* min outputs */, 1 /*max outputs */,
gr::io_signature::make(1 /* min outputs */, 1 /* max outputs */,
sizeof(char))),
tag_(pmt::intern(tag)), vlen_(vlen), sample_buffer_(sample_buffer),
min_peak_points_(min_peak_points), model_server_(model_server),
confidence_(confidence), n_inference_(n_inference), samp_rate_(samp_rate),
inference_count_(0), running_(true), last_rx_freq_(0), last_rx_time_(0),
inference_connected_(false), samples_since_tag_(0) {
power_inference_(power_inference), inference_count_(0), running_(true),
last_rx_freq_(0), last_rx_time_(0), inference_connected_(false),
samples_since_tag_(0) {
samples_lookback_.reset(new gr_complex[vlen * sample_buffer]);
unsigned int alignment = volk_get_alignment();
total_.reset((float *)volk_malloc(sizeof(float), alignment));
Expand Down Expand Up @@ -324,6 +325,12 @@ void iq_inference_impl::run_inference_() {
req.set(boost::beast::http::field::content_type,
"application/octet-stream");
req.body() = body;
if (power_inference_) {
const std::string_view power_body(
reinterpret_cast<char const *>(output_item.power),
output_item.sample_count * sizeof(float));
req.body() += power_body;
}
req.prepare_payload();
std::string results;
// TODO: troubleshoot test flask server hang after one request.
Expand Down Expand Up @@ -436,6 +443,9 @@ void iq_inference_impl::process_items_(size_t power_in_count,
if (!last_rx_freq_) {
continue;
}
// TODO: we select one slice in time (samples and power),
// where at least one sample exceeded the minimum. We could
// potentially select more samples either side for example.
output_item_type output_item;
output_item.rx_time =
last_rx_time_ + (samples_since_tag_ / TIME_T(samp_rate_));
Expand Down
3 changes: 2 additions & 1 deletion lib/iq_inference_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -246,6 +246,7 @@ class iq_inference_impl : public iq_inference, base_impl {
double confidence_;
size_t n_inference_;
int samp_rate_;
bool power_inference_;
size_t inference_count_;
size_t samples_since_tag_;
boost::lockfree::spsc_queue<output_item_type> inference_q_{MAX_INFERENCE};
Expand All @@ -271,7 +272,7 @@ class iq_inference_impl : public iq_inference, base_impl {
iq_inference_impl(const std::string &tag, size_t vlen, size_t sample_buffer,
double min_peak_points, const std::string &model_server,
const std::string &model_names, double confidence,
size_t n_inference, int samp_rate);
size_t n_inference, int samp_rate, bool power_inference);
void forecast(int noutput_items, gr_vector_int &ninput_items_required);
int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
Expand Down
3 changes: 2 additions & 1 deletion python/iqtlabs/bindings/iq_inference_python.cc
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
/* BINDTOOL_GEN_AUTOMATIC(0) */
/* BINDTOOL_USE_PYGCCXML(0) */
/* BINDTOOL_HEADER_FILE(iq_inference.h) */
/* BINDTOOL_HEADER_FILE_HASH(bb19467225c84c83a744c71e2cfd0472) */
/* BINDTOOL_HEADER_FILE_HASH(368e033e2f2df720e22de85a2e3f6fa7) */
/***********************************************************************************/

#include <pybind11/complex.h>
Expand Down Expand Up @@ -46,6 +46,7 @@ void bind_iq_inference(py::module& m)
py::arg("confidence"),
py::arg("n_inference"),
py::arg("samp_rate"),
py::arg("power_inference"),
D(iq_inference, make))


Expand Down
60 changes: 51 additions & 9 deletions python/iqtlabs/qa_iq_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,6 +212,7 @@
from flask import Flask, request
from gnuradio import gr, gr_unittest
from gnuradio import analog, blocks
import numpy as np

try:
from gnuradio.iqtlabs import iq_inference, retune_pre_fft, tuneable_test_source
Expand All @@ -234,13 +235,33 @@ def tearDown(self):
if self.pid:
os.kill(self.pid, 15)

def simulate_torchserve(self, port, model_name, result):
def simulate_torchserve(self, port, model_name, result, fft_size):
app = Flask(__name__)

# nosemgrep:github.workflows.config.useless-inner-function
@app.route(f"/predictions/{model_name}", methods=["POST"])
def predictions_test():
print("got %s, count %u" % (type(request.data), len(request.data)))
samples = np.frombuffer(request.data, dtype=np.complex64, count=fft_size)
power_offset = samples.size * samples.itemsize
power = np.frombuffer(
request.data[power_offset:], dtype=np.float32, count=fft_size
)
unique_samples = np.unique(samples)
unique_power = np.unique(power)
print(unique_samples, unique_power)
if unique_samples.size != 1:
print("not unique samples: ", unique_samples)
raise ValueError
if unique_power.size != 1:
print("not unique samples: ", unique_power)
raise ValueError
if unique_samples[0].real != unique_samples[0].imag:
print("not equal sample: ", unique_samples)
raise ValueError
if unique_samples[0].real != unique_power[0]:
print("not equal power to sample", unique_power, unique_samples)
raise ValueError
return json.dumps(result, indent=2), 200

try:
Expand All @@ -252,7 +273,7 @@ def run_flowgraph(self, tmpdir, fft_size, samp_rate, port, model_name):
test_file = os.path.join(tmpdir, "samples")
freq_divisor = 1e9
new_freq = 1e9 / 2
delay = 500
delay = 300

source = tuneable_test_source(freq_divisor)
strobe = blocks.message_strobe(pmt.to_pmt({"freq": new_freq}), delay)
Expand All @@ -263,7 +284,16 @@ def run_flowgraph(self, tmpdir, fft_size, samp_rate, port, model_name):
stream2vector_samples = blocks.stream_to_vector(gr.sizeof_gr_complex, fft_size)

iq_inf = iq_inference(
"rx_freq", fft_size, 512, -1e9, f"localhost:{port}", model_name, 0.8, 10001, int(samp_rate)
tag="rx_freq",
vlen=fft_size,
sample_buffer=512,
min_peak_points=-1e9,
model_server=f"localhost:{port}",
model_names=model_name,
confidence=0.8,
n_inference=5001,
samp_rate=int(samp_rate),
power_inference=True,
)

self.tb.msg_connect((strobe, "strobe"), (source, "cmd"))
Expand All @@ -276,8 +306,10 @@ def run_flowgraph(self, tmpdir, fft_size, samp_rate, port, model_name):
self.tb.connect((iq_inf, 0), (fs, 0))

self.tb.start()
test_time = 10
time.sleep(test_time)
for i in range(10):
new_freq *= 1.1
strobe.set_msg(pmt.to_pmt({"freq": int(new_freq)}))
time.sleep(1)
self.tb.stop()
self.tb.wait()
return test_file
Expand All @@ -286,10 +318,10 @@ def test_bad_instance(self):
port = 11002
model_name = "testmodel"
predictions_result = ["cant", "parse", {"this": 0}]
fft_size = 1024
if self.pid == 0:
self.simulate_torchserve(port, model_name, predictions_result)
self.simulate_torchserve(port, model_name, predictions_result, fft_size)
return
fft_size = 1024
samp_rate = 4e6
with tempfile.TemporaryDirectory() as tmpdir:
self.run_flowgraph(tmpdir, fft_size, samp_rate, port, model_name)
Expand All @@ -299,10 +331,10 @@ def test_instance(self):
model_name = "testmodel"
px = 100
predictions_result = {"modulation": [{"conf": 0.9}]}
fft_size = 1024
if self.pid == 0:
self.simulate_torchserve(port, model_name, predictions_result)
self.simulate_torchserve(port, model_name, predictions_result, fft_size)
return
fft_size = 1024
samp_rate = 4e6
with tempfile.TemporaryDirectory() as tmpdir:
test_file = self.run_flowgraph(
Expand All @@ -313,11 +345,21 @@ def test_instance(self):
content = f.read()
json_raw_all = content.split("\n\n")
self.assertTrue(json_raw_all)
last_ts = 0
last_rx_freq = 0
for json_raw in json_raw_all:
if not json_raw:
continue
result = json.loads(json_raw)
print(result)
self.assertEqual(result.get("error", None), None)
rx_freq = float(result["metadata"]["rx_freq"])
ts = float(result["metadata"]["rx_freq"])
self.assertGreater(rx_freq, last_rx_freq)
self.assertGreater(ts, last_ts)
last_ts = ts
last_rx_freq = rx_freq



if __name__ == "__main__":
Expand Down

0 comments on commit a540cab

Please sign in to comment.