Skip to content

Commit

Permalink
Merge pull request #108 from IGNF/epsg-pipelines
Browse files Browse the repository at this point in the history
Propagate metadata through pdal and laspy pipelines
  • Loading branch information
leavauchier authored Apr 16, 2024
2 parents 96de26f + 61bd7b4 commit 0c01034
Show file tree
Hide file tree
Showing 21 changed files with 362 additions and 108 deletions.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,9 @@ outputs/
tests/files/large/V0.5_792000_6272000.las
tests/files/large/842_6521_invalid_band.las

# test output
tmp/

# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
Expand Down
1 change: 1 addition & 0 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ repos:
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
args: ["--maxkb=1000"]
- id: debug-statements
- id: detect-private-key

Expand Down
4 changes: 4 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,9 @@
# main

### 1.10.2
- Add support for metadata propagation through compound pdal pipelines:
- fix epsg propagation

### 1.10.1
- Fix edge case when BD uni does not have data for the requested bbox

Expand Down
1 change: 1 addition & 0 deletions environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -43,3 +43,4 @@ dependencies:
- sphinxnotes-mock==1.0.*
- sphinx-argparse==0.4.*
- sphinxcontrib-mermaid==0.9.*
- ign-pdal-tools>=1.5.2
12 changes: 6 additions & 6 deletions lidar_prod/application.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def get_list_las_path_from_src(src_path: str):
def identify_vegetation_unclassified(config, src_las_path: str, dest_las_path: str):
log.info(f"Identifying on {src_las_path}")
data_format = config["data_format"]
las_data = get_las_data_from_las(src_las_path)
las_data = get_las_data_from_las(src_las_path, config.data_format.epsg)

# add the necessary dimension to store the results
cleaner: Cleaner = hydra.utils.instantiate(data_format.cleaning.input_vegetation_unclassified)
Expand Down Expand Up @@ -91,7 +91,7 @@ def just_clean(config, src_las_path: str, dest_las_path: str):
avoid delays when doing the same operations over and over again )"""
log.info(f"Cleaning {src_las_path}")
data_format = config["data_format"]
las_data = get_las_data_from_las(src_las_path)
las_data = get_las_data_from_las(src_las_path, config.data_format.epsg)

# remove unwanted dimensions
cleaner = hydra.utils.instantiate(data_format.cleaning.input)
Expand Down Expand Up @@ -131,15 +131,15 @@ def apply_building_module(config: DictConfig, src_las_path: str, dest_las_path:
thresholds=bv_cfg.thresholds,
use_final_classification_codes=bv_cfg.use_final_classification_codes,
)
bv.run(tmp_las_path)
las_metadata = bv.run(tmp_las_path)

# Complete buildings with non-candidates that were nevertheless confirmed
bc: BuildingCompletor = hydra.utils.instantiate(config.building_completion)
bc.run(bv.pipeline)
las_metadata = bc.run(bv.pipeline, las_metadata)

# Define groups of confirmed building points among non-candidates
bi: BuildingIdentifier = hydra.utils.instantiate(config.building_identification)
bi.run(bc.pipeline, tmp_las_path)
bi.run(bc.pipeline, tmp_las_path, las_metadata=las_metadata)

# Remove unnecessary intermediary dimensions
cl: Cleaner = hydra.utils.instantiate(config.data_format.cleaning.output_building)
Expand All @@ -166,7 +166,7 @@ def get_shapefile(config: DictConfig, src_las_path: str, dest_las_path: str):
get_pipeline(
src_las_path,
config.data_format.epsg,
),
)[0],
buffer=config.building_validation.application.bd_uni_request.buffer,
), # bbox
config.data_format.epsg,
Expand Down
19 changes: 12 additions & 7 deletions lidar_prod/tasks/building_completion.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,27 +39,34 @@ def __init__(
self.data_format = data_format
self.pipeline: pdal.pipeline.Pipeline = None

def run(self, input_values: Union[str, pdal.pipeline.Pipeline]):
def run(
self, input_values: Union[str, pdal.pipeline.Pipeline], las_metadata: dict = None
) -> dict:
"""Application.
Transform cloud at `src_las_path` following building completion logic
Args:
input_values (str|pdal.pipeline.Pipeline): path to either input LAS file or a pipeline
target_las_path (str): path for saving updated LAS file.
las_metadata (dict): current pipeline metadata, used to propagate input metadata to the
application output las (epsg, las version, etc)
Returns:
str: returns `target_las_path` for potential terminal piping.
str: returns `las_metadata`: metadata of the initial las, which contain
information to pass to the writer in order for the application to have an output
with the same header (las version, srs, ...) as the input
"""
log.info(
"Completion of building with relatively distant points that have high enough "
+ "probability"
)
pipeline = get_pipeline(input_values, self.data_format.epsg)
pipeline, las_metadata = get_pipeline(input_values, self.data_format.epsg, las_metadata)
self.prepare_for_building_completion(pipeline)
self.update_classification()

return las_metadata

def prepare_for_building_completion(self, pipeline: pdal.pipeline.Pipeline) -> None:
"""Prepare for building completion.
Expand All @@ -70,9 +77,7 @@ def prepare_for_building_completion(self, pipeline: pdal.pipeline.Pipeline) -> N
the same building and they will be confirmed as well.
Args:
src_las_path (pdal.pipeline.Pipeline): input LAS pipeline
target_las_path (str): output, prepared LAS.
pipeline (pdal.pipeline.Pipeline): input LAS pipeline
"""

# Reset Cluster dim out of safety
Expand Down
13 changes: 9 additions & 4 deletions lidar_prod/tasks/building_identification.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,22 +34,27 @@ def run(
self,
input_values: Union[str, pdal.pipeline.Pipeline],
target_las_path: str = None,
) -> str:
las_metadata: dict = None,
) -> dict:
"""Identify potential buildings in a new channel, excluding former candidates as well as
already confirmed building (confirmed by either Validation or Completion).
Args:
input_values (str | pdal.pipeline.Pipeline): path or pipeline to input LAS file with
a building probability channel
target_las_path (str): output LAS
las_metadata (dict): current pipeline metadata, used to propagate input metadata to the
application output las (epsg, las version, etc)
Returns: updated las_metadata
"""
# aliases
_cid = self.data_format.las_dimensions.cluster_id
_completion_flag = self.data_format.las_dimensions.completion_non_candidate_flag

log.info("Clustering of points with high building proba.")
pipeline = get_pipeline(input_values, self.data_format.epsg)
pipeline, las_metadata = get_pipeline(input_values, self.data_format.epsg, las_metadata)

# Considered for identification:
non_candidates = f"({self.data_format.las_dimensions.candidate_buildings_flag} == 0)"
Expand Down Expand Up @@ -78,10 +83,10 @@ def run(
dimensions=f"{_cid}=>{self.data_format.las_dimensions.ai_building_identified}"
)
if target_las_path:
pipeline |= get_pdal_writer(target_las_path)
pipeline |= get_pdal_writer(target_las_path, las_metadata)
os.makedirs(osp.dirname(target_las_path), exist_ok=True)
pipeline.execute()

self.pipeline = pipeline

return target_las_path
return las_metadata
41 changes: 29 additions & 12 deletions lidar_prod/tasks/building_validation.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,8 @@ def run(
self,
input_values: Union[str, pdal.pipeline.Pipeline],
target_las_path: str = None,
) -> str:
las_metadata: dict = None,
) -> dict:
"""Runs application.
Transforms cloud at `input_values` following building validation logic,
Expand All @@ -91,30 +92,35 @@ def run(
input_values (str| pdal.pipeline.Pipeline): path or pipeline to input LAS file with
a building probability channel
target_las_path (str): path for saving updated LAS file.
las_metadata (dict): current pipeline metadata, used to propagate input metadata to the
application output las (epsg, las version, etc)
Returns:
str: returns `target_las_path`
str: returns `las_metadata`: metadata of the input las, which contain
information to pass to the writer in order for the application to have an output
with the same header (las version, srs, ...) as the input
"""
self.pipeline = get_pipeline(input_values, self.data_format.epsg)
self.pipeline, las_metadata = get_pipeline(input_values, self.data_format.epsg)
with TemporaryDirectory() as td:
log.info("Preparation : Clustering of candidates buildings & Import vectors")
if isinstance(input_values, str):
log.info(f"Applying Building Validation to file \n{input_values}")
temp_f = osp.join(td, osp.basename(input_values))
else:
temp_f = ""
self.prepare(input_values, temp_f)
las_metadata = self.prepare(input_values, temp_f, las_metadata)
log.info("Using AI and Databases to update cloud Classification")
self.update()
return target_las_path
las_metadata = self.update(target_las_path=target_las_path, las_metadata=las_metadata)
return las_metadata

def prepare(
self,
input_values: Union[str, pdal.pipeline.Pipeline],
prepared_las_path: str,
save_result: bool = False,
) -> None:
las_metadata: dict = None,
) -> dict:
f"""
Prepare las for later decision process. .
1. Cluster candidates points, in a new
Expand All @@ -135,6 +141,11 @@ def prepare(
a building probability channel
target_las_path (str): path for saving prepared LAS file.
save_result (bool): True to save a las instead of propagating a pipeline
las_metadata (dict): current pipeline metadata, used to propagate input metadata to the
application output las (epsg, las version, etc)
Returns:
updated las metadata
"""

Expand All @@ -143,7 +154,7 @@ def prepare(
dim_cluster_id_candidates = self.data_format.las_dimensions.ClusterID_candidate_building
dim_overlay = self.data_format.las_dimensions.uni_db_overlay

self.pipeline = get_pipeline(input_values, self.data_format.epsg)
self.pipeline, las_metadata = get_pipeline(input_values, self.data_format.epsg)
# Identify candidates buildings points with a boolean flag
self.pipeline |= pdal.Filter.ferry(dimensions=f"=>{dim_candidate_flag}")
_is_candidate_building = (
Expand Down Expand Up @@ -204,17 +215,21 @@ def prepare(
)

if save_result:
self.pipeline |= get_pdal_writer(prepared_las_path)
self.pipeline |= get_pdal_writer(prepared_las_path, las_metadata)
os.makedirs(osp.dirname(prepared_las_path), exist_ok=True)
self.pipeline.execute()

if temp_dirpath:
shutil.rmtree(temp_dirpath)

def update(self, src_las_path: str = None, target_las_path: str = None) -> None:
return las_metadata

def update(
self, src_las_path: str = None, target_las_path: str = None, las_metadata: dict = None
) -> dict:
"""Updates point cloud classification channel."""
if src_las_path:
self.pipeline = get_pipeline(src_las_path, self.data_format.epsg)
self.pipeline, las_metadata = get_pipeline(src_las_path, self.data_format.epsg)

points = self.pipeline.arrays[0]

Expand Down Expand Up @@ -250,10 +265,12 @@ def update(self, src_las_path: str = None, target_las_path: str = None) -> None:
self.pipeline = pdal.Pipeline(arrays=[points])

if target_las_path:
self.pipeline = get_pdal_writer(target_las_path).pipeline(points)
self.pipeline = get_pdal_writer(target_las_path, las_metadata).pipeline(points)
os.makedirs(osp.dirname(target_las_path), exist_ok=True)
self.pipeline.execute()

return las_metadata

def _extract_cluster_info_by_idx(
self, las: np.ndarray, pts_idx: np.ndarray
) -> BuildingValidationClusterInfo:
Expand Down
2 changes: 1 addition & 1 deletion lidar_prod/tasks/building_validation_optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,7 @@ def _extract_clusters_from_las(
candidate buildings
"""
las = pdal_read_las_array(prepared_las_path, self.bv.data_format.epsg)
las, _ = pdal_read_las_array(prepared_las_path, self.bv.data_format.epsg)
# las: laspy.LasData = laspy.read(prepared_las_path)
dim_cluster_id = las[self.bv.data_format.las_dimensions.ClusterID_candidate_building]
dim_classification = las[self.bv.data_format.las_dimensions.classification]
Expand Down
5 changes: 3 additions & 2 deletions lidar_prod/tasks/cleaning.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,15 +60,16 @@ def run(self, src_las_path: str, target_las_path: str, epsg: int | str):
it from the las metadata)
"""
points = pdal_read_las_array(src_las_path, epsg)
points, metadata = pdal_read_las_array(src_las_path, epsg)

# Check input dims to see what we can keep.
input_dims = points.dtype.fields.keys()
self.extra_dims_as_dict = {
k: v for k, v in self.extra_dims_as_dict.items() if k in input_dims
}

pipeline = pdal.Pipeline(arrays=[points]) | get_pdal_writer(
target_las_path, extra_dims=self.get_extra_dims_as_str()
target_las_path, reader_metadata=metadata, extra_dims=self.get_extra_dims_as_str()
)
os.makedirs(osp.dirname(target_las_path), exist_ok=True)
pipeline.execute()
Expand Down
Loading

0 comments on commit 0c01034

Please sign in to comment.