Skip to content

Commit

Permalink
Add FiniteConditionalVariance_new_ext
Browse files Browse the repository at this point in the history
Signed-off-by: Avi Shinnar <[email protected]>
  • Loading branch information
shinnar committed Dec 5, 2024
1 parent ff626c6 commit 8636c84
Showing 1 changed file with 25 additions and 0 deletions.
25 changes: 25 additions & 0 deletions coq/ProbTheory/ConditionalExpectation.v
Original file line number Diff line number Diff line change
Expand Up @@ -6868,6 +6868,31 @@ Section fin_cond_exp.
{isl : IsLp prts 2 f} : Ts -> R :=
FiniteConditionalExpectation (rv := variance_rv f) (isfe:=FiniteConditionalVariance_exp_from_L2 f) _.

Lemma FiniteConditionalVariance_new_ext (f1 f2 : Ts -> R)
{rv1 : RandomVariable dom borel_sa f1}
{rv2 : RandomVariable dom borel_sa f2}
{isl1 : IsLp prts 2 f1}
{isl2 : IsLp prts 2 f2} :
rv_eq f1 f2 ->
rv_eq (FiniteConditionalVariance_new f1) (FiniteConditionalVariance_new f2).
Proof.
intros ??.
unfold FiniteConditionalVariance_new.
apply FiniteConditionalExpectation_ext.
intros ?.
unfold rvsqr, rvminus, rvplus, rvopp, rvscale.
do 3 f_equal.
now apply FiniteConditionalExpectation_ext.
Qed.

Lemma FiniteVariance_new_eq (f : Ts -> R)
{rv : RandomVariable dom borel_sa f}
{isl : IsLp prts 2 f} :
ConditionalVariance f = (fun x : Ts => FiniteConditionalVariance_new f x).
Proof.
apply FiniteCondexp_eq.
Qed.

Theorem FiniteCondexp_cond_exp (f : Ts -> R)
{rv : RandomVariable dom borel_sa f}
{isfe:IsFiniteExpectation prts f}
Expand Down

0 comments on commit 8636c84

Please sign in to comment.