Skip to content

Commit

Permalink
wip
Browse files Browse the repository at this point in the history
  • Loading branch information
bmtrager committed Dec 2, 2024
1 parent 179f104 commit 4d45bc5
Showing 1 changed file with 34 additions and 0 deletions.
34 changes: 34 additions & 0 deletions coq/QLearn/Tsitsiklis.v
Original file line number Diff line number Diff line change
Expand Up @@ -646,6 +646,40 @@ Proof.
apply H0.
Qed.

Lemma uniform_converge_sum_sq_tails (α : nat -> Ts -> R) :
(forall (n:nat), almostR2 prts Rle (const 0) (α n)) ->
(forall ω, is_finite (Lim_seq (sum_n (fun k => rvsqr (α k) ω)))) ->
let A := fun ω => Lim_seq (sum_n (fun k => rvsqr (α k) ω)) in
is_lim_seq'_uniform_almost (fun n => fun ω => sum_n (fun k => rvsqr (α k) ω) n) A ->
forall (eps : posreal),
eventually (fun n => almostR2 prts Rbar_le (fun ω : Ts => Lim_seq (sum_n (fun n0 : nat => (α (S n + n0)%nat ω)²))) (const eps)).
Proof.
intros alpha_pos lim_fin A uniform eps.
assert (0 < eps/2).
{
generalize (cond_pos eps); intros; lra.
}
specialize (uniform (mkposreal _ H)).
revert uniform.
apply eventually_impl.
apply all_eventually; intros ?.
apply almost_impl.
apply almost_forall in alpha_pos.
revert alpha_pos; apply almost_impl.
apply all_almost; intros ???.
simpl in H1.
rv_unfold'_in_star.
assert (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)) =
Rbar_minus (Lim_seq (sum_n (fun k : nat => (α k x0)²)))
(sum_n (fun k : nat => (α k x0)²) x)).
{
admit.
}
rewrite H2.
rewrite <- lim_fin.
simpl.
Admitted.

Lemma lemma1_alpha_beta_shift (α β w B W : nat -> Ts -> R) (Ca Cb : R)
{F : nat -> SigmaAlgebra Ts}
(isfilt : IsFiltration F)
Expand Down

0 comments on commit 4d45bc5

Please sign in to comment.