Skip to content

Commit

Permalink
finish adjustment to row_sum_rot_pow_is_really_binned
Browse files Browse the repository at this point in the history
Signed-off-by: Avi Shinnar <[email protected]>
  • Loading branch information
shinnar committed Jan 16, 2024
1 parent 8cef7c8 commit 03e7299
Showing 1 changed file with 7 additions and 5 deletions.
12 changes: 7 additions & 5 deletions coq/FHE/zp_prim_root.v
Original file line number Diff line number Diff line change
Expand Up @@ -3000,17 +3000,19 @@ Section add_self_pow.
is_partitioned_in_same_bins_by_m_to (row_sum_rot_pow v) 0.
Proof.
rewrite /row_sum_rot_pow.
suff {v}: forall n', forall v : 'rV_(2 ^ n),
suff {v}: forall n', n' <= n -> forall v : 'rV_(2 ^ n),
is_partitioned_in_same_bins_by_m_to v n' ->
is_partitioned_in_same_bins_by_m_to (row_sum_rot_pow_rec v n') 0.
{ apply.
apply is_partitioned_in_same_bins_by_m_to0.
- apply leqnn.
- apply is_partitioned_in_same_bins_by_m_to0.
}
induction n' => //= v.
induction n' => //= n'l v.
move/row_sum_rot_pow_rec_step_narrows_bins => HH.
apply IHn'.
apply HH.
Admitted.
- by apply ltnW.
- by apply HH.
Qed.

Lemma row_sum_rot_pow_is_summed {n} (v:'rV[G]_(2^n)) :
\sum_(i < 2^n) v 0 i = (row_sum_rot_pow v) 0 (Ordinal (expn_2_pos n)).
Expand Down

0 comments on commit 03e7299

Please sign in to comment.