Skip to content

Commit

Permalink
Merge pull request #146 from HelgeGehring/update-toc
Browse files Browse the repository at this point in the history
update toc, split maxwell docs
  • Loading branch information
HelgeGehring authored Apr 3, 2024
2 parents cd77227 + 5aedb84 commit 7a7f321
Show file tree
Hide file tree
Showing 3 changed files with 135 additions and 128 deletions.
19 changes: 10 additions & 9 deletions docs/_toc.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,16 @@ parts:
- caption: Examples
chapters:
- file: photonics/examples/waveguide_modes.py
#- file: photonics/examples/leaky_waveguide.py
#- file: photonics/examples/bent_waveguide.py
- file: photonics/examples/vary_width.py
- file: photonics/examples/vary_wavelength.py
- file: photonics/examples/selecting_modes.py
- file: photonics/examples/calculate_GVD.py
- file: photonics/examples/fiber_overlap.py
- file: photonics/examples/crosstalk.py
sections:
#- file: photonics/examples/leaky_waveguide.py
#- file: photonics/examples/bent_waveguide.py
- file: photonics/examples/vary_width.py
- file: photonics/examples/vary_wavelength.py
- file: photonics/examples/selecting_modes.py
- file: photonics/examples/calculate_GVD.py
- file: photonics/examples/fiber_overlap.py
- file: photonics/examples/crosstalk.py
- file: photonics/examples/propagation_loss.py
- file: photonics/examples/metal_heater_phase_shifter.py
- file: photonics/examples/metal_heater_phase_shifter_transient.py
- file: photonics/examples/si_heater_phase_shifter.py
Expand All @@ -40,7 +42,6 @@ parts:
- file: photonics/examples/depletion_waveguide.py
- file: photonics/examples/effective_area.py
- file: photonics/examples/refinement.py
- file: photonics/examples/propagation_loss.py
- file: electronics/examples/capacitor.py
- file: electronics/examples/coax_cable.py
- file: electronics/examples/coplanar_waveguide_vary_width.py
Expand Down
119 changes: 0 additions & 119 deletions docs/math/maxwell.md
Original file line number Diff line number Diff line change
Expand Up @@ -329,125 +329,6 @@ where $R$ is the radius of curvature in $x$-direction.
See discussion on choice of R in {cite}`Masi:10`
## TE/TM Polarization Fraction
$$
\mathrm{TEfrac}
&=
\frac{
\int \left| E_{x_1} \right|^2 \mathrm{d}x\mathrm{d}y
}{
\int \left| E_{x_1} \right|^2 + \left| E_{x_2} \right|^2 \mathrm{d}x \mathrm{d}y
}

\mathrm{TMfrac}
&=
\frac{
\int \left| E_{x_2} \right|^2 \mathrm{d}x\mathrm{d}y
}{
\int \left| E_{x_1} \right|^2 + \left| E_{x_2} \right|^2 \mathrm{d}x \mathrm{d}y
}
$$
## Loss per meter [dB/m]
$$
\text{Loss at }x_3\text{ [dB]}
&=-10 \log_{10} \frac{\left|E(x_3)\right|^2}{\left|E(x_3=0)\right|^2}
\\
&=-20 \log_{10} \frac{\left|E(x_3)\right|}{\left|E(x_3=0)\right|}
\\
&=-20 \log_{10} \mathrm{e}^{\Im\beta x_3}
\\
&=-20 \frac{\log_{\mathrm{e}} \mathrm{e}^{\Im\beta x_3}}{\ln 10}
\\
&=\frac{-20}{\ln 10} \Im\beta x_3
\\
\\
\text{Loss [dB/m]}
&=
\frac{-20}{\ln 10} \Im\beta \, 1\mathrm{m}
$$
## Effective Area
As defined in {cite}`Agrawal2019`
$$
A_{\text{eff}}
=
\frac{
\left( \int \left| \vec{\mathcal{E}} \right|^2 \mathrm{d}A \right)^2
}{
\int \left| \vec{\mathcal{E}} \right|^4 \mathrm{d}A
}
$$
## Confinement coefficient
As defined in {cite}`Robinson2008`
(and generalized for varying refractive indices in the active area)
$$
\Gamma
=
\frac{
c \epsilon_0 \int n(\vec{x}) \left| \vec{\mathcal{E}} \right|^2 \mathrm{d}A
}{
\left( \int \vec{\mathcal{E}}^* \times \vec{\mathcal{H}}
+
\vec{\mathcal{E}} \times \vec{\mathcal{H}}^*
\mathrm{d}A \right) / 2
}
$$
## Overlap coefficient
$$
c_{\nu\mu}
=
\frac{
\int \vec{\mathcal{E}}_\nu^* \times \vec{\mathcal{H}}_\mu
+
\vec{\mathcal{E}}_\nu \times \vec{\mathcal{H}}_\mu^* \mathrm{d}A
}{
\prod_{i=\{\mu,\nu\}}
\sqrt{
\int \vec{\mathcal{E}}_i^* \times \vec{\mathcal{H}}_i
+
\vec{\mathcal{E}}_i \times \vec{\mathcal{H}}_i^* \mathrm{d}A
}
}
=
c_{\mu\nu}^*
$$
## Characteristic impedance
<https://ieeexplore.ieee.org/document/108320>
Power and current:
$$
P_k
=
\delta_{jk}
\int
\left(
\vec{\mathcal{E}}_j^* \times \vec{\mathcal{H}}_k
\right) \cdot \hat{x}_3

I_{zik} = \oint_{C_i} \mathcal{H} \ cdot
$$
Characteristic impedance:
$$
P = I^T Z_c I

Z_c = [I^{-1}]^T P I^{-1}
$$
## Calculating static potentials
As in the static case
Expand Down
125 changes: 125 additions & 0 deletions docs/math/maxwell_quantities.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
# Quantities of optical modes

## TE/TM Polarization Fraction

$$
\mathrm{TEfrac}
&=
\frac{
\int \left| E_{x_1} \right|^2 \mathrm{d}x\mathrm{d}y
}{
\int \left| E_{x_1} \right|^2 + \left| E_{x_2} \right|^2 \mathrm{d}x \mathrm{d}y
}
\mathrm{TMfrac}
&=
\frac{
\int \left| E_{x_2} \right|^2 \mathrm{d}x\mathrm{d}y
}{
\int \left| E_{x_1} \right|^2 + \left| E_{x_2} \right|^2 \mathrm{d}x \mathrm{d}y
}
$$

## Loss per meter [dB/m]

$$
\text{Loss at }x_3\text{ [dB]}
&=-10 \log_{10} \frac{\left|E(x_3)\right|^2}{\left|E(x_3=0)\right|^2}
\\
&=-20 \log_{10} \frac{\left|E(x_3)\right|}{\left|E(x_3=0)\right|}
\\
&=-20 \log_{10} \mathrm{e}^{\Im\beta x_3}
\\
&=-20 \frac{\log_{\mathrm{e}} \mathrm{e}^{\Im\beta x_3}}{\ln 10}
\\
&=\frac{-20}{\ln 10} \Im\beta x_3
\\
\\
\text{Loss [dB/m]}
&=
\frac{-20}{\ln 10} \Im\beta \, 1\mathrm{m}
$$

## Effective Area

As defined in {cite}`Agrawal2019`

$$
A_{\text{eff}}
=
\frac{
\left( \int \left| \vec{\mathcal{E}} \right|^2 \mathrm{d}A \right)^2
}{
\int \left| \vec{\mathcal{E}} \right|^4 \mathrm{d}A
}
$$

## Confinement coefficient

As defined in {cite}`Robinson2008`
(and generalized for varying refractive indices in the active area)

$$
\Gamma
=
\frac{
c \epsilon_0 \int n(\vec{x}) \left| \vec{\mathcal{E}} \right|^2 \mathrm{d}A
}{
\left( \int \vec{\mathcal{E}}^* \times \vec{\mathcal{H}}
+
\vec{\mathcal{E}} \times \vec{\mathcal{H}}^*
\mathrm{d}A \right) / 2
}
$$

## Overlap coefficient

$$
c_{\nu\mu}
=
\frac{
\int \vec{\mathcal{E}}_\nu^* \times \vec{\mathcal{H}}_\mu
+
\vec{\mathcal{E}}_\nu \times \vec{\mathcal{H}}_\mu^* \mathrm{d}A
}{
\prod_{i=\{\mu,\nu\}}
\sqrt{
\int \vec{\mathcal{E}}_i^* \times \vec{\mathcal{H}}_i
+
\vec{\mathcal{E}}_i \times \vec{\mathcal{H}}_i^* \mathrm{d}A
}
}
=
c_{\mu\nu}^*
$$

## Characteristic impedance

<https://ieeexplore.ieee.org/document/108320>

Power and current:

$$
P_k
=
\delta_{jk}
\int
\left(
\vec{\mathcal{E}}_j^* \times \vec{\mathcal{H}}_k
\right) \cdot \hat{x}_3
I_{zik} = \oint_{C_i} \mathcal{H} \ cdot
$$

Characteristic impedance:

$$
P = I^T Z_c I
Z_c = [I^{-1}]^T P I^{-1}
$$

```{bibliography}
:style: unsrt
:filter: docname in docnames
```

0 comments on commit 7a7f321

Please sign in to comment.